HaB4a/sibHa AUCUMUMAIHA

5A3U OAHUX

R J1eKTOp - K.T.H., AOLEHT
baknaH Irop Bcesonoaosuny

Site: baklaniv.at.ua

E-malil: laa@ukr.net

2016-2017

mailto:iaa@ukr.net

Jlekiria Ne2.

CepenoBuuie cucreM 0a3 JaHHUX

¢ Levels of Architecture

e Inter-level Mappings

¢ Database Administrator

¢ Database Management System

e Components of the DBMS Suite

e Front-end and Back-end Perspectives
e Database System Architecture

¢ Summary and Concluding Remarks

2.1 Levels of Architecture

In [Date, 2004], Christopher Date describes three levels of architecture of a database
system, namely, the external level, the conceptual level, and the internal level. These levels
are illustrated in Figure 2-1; we will briefly discuss each.

External Level
Extamal View 1
External-Concepiual

Mapgping

]

Conceptual Level
Entity 1 Entity n
P N 7~
Entity 2 Entity n + 1
Conceptual-Internal Maopirg
w

/I- nternal Leval

Figure 2-1. Levels of DBS Architecture

2.1.1 External Level

The external level is concerned with individual user views. It therefore varies according to
users’ perspectives. The external level is defined by the external schema.
Typically, the database is accessed through its external schema. The application

programmer uses both the host language and the daia sublanguage (DSL) to create a user
interface that end users use to access the system:

The DSL is the language that is concerned specifically with
database objects and operations. To illustrate, SQL (siructured
query language) is the indusiry's standard DSL. Other examples
of data sub-languages are QUEL and KQL (knowledge query

language). These languages will be further discussed later in
the course.

The host language is that which supports the DSL in addition to
other non-database facilities such as manipulation of variables,
computations and Boolean logic. Host languages are typically

high level languages (HLL); examples include COBOL, C, C++,
Java, Pascal, RPG-400, etc.

Typically, the sublanguage consists of a data definition language (DDL), a data
manipulation language (DML), and a data control language (DCL). These components
are not necessarily distinct entities, but are typically part of a single coherent product.

The above-mentioned facilities allow users to define assorted logical views of data in

the database. In summary, the external schema is the user interpretation of the database,
but facilitated by the DSL.

2.1.2 Conceptual Level

The conceptual level is an abstract representation of the entire information content of

the database; it also referred to as the logical or community user view. It is defined by
means of the conceptual schema, which includes definition of each of the various types of
conceptual records.

The conceptual schema includes defining the structure of the database, security
constraints, operational constraints and integrity checks. It represents a closer picture of
how data will be actually stored and managed, and is the level that most technical user
will relate.

The conceptual schema must adhere to the data independence requirement. Also,
it must be comprehensive since it represents the realization of the entire database design.

2.1.3 Internal Level

Also called the storage view, the internal level is the low level representation of the
database. It is one level above the physical level, which deals with pages, cylinders and
tracks on the storage device.

The internal level is defined by the internal schema, which addresses issues such as
record types, indexes, field representation, physical storage sequence of records, data
access, etc., and written in the internal DDL.

2.2 Inter-level Mappings

Continuing from the previous section, the literature also describes two levels of mappings
that connect the three schemas (again, see [Date, 2004]). Figure 2-1 illustrates the
different schemas and their interrelationships with respect to the DBMS. From the figure,
observe that there are two levels of mapping — the external-conceptual mapping and the
conceptual-internal mapping:

¢ The conceptual-internal mapping specifies how conceptual
records are represented at the internal level. If changes are made
at the internal level, this mapping must be updated. Traditionally,
the database administrator (DBA) maintains this mapping in
order to preserve data independence (the DBA is discussed in the
next section). In contemporary systems, the DBMS automatically
updates and maintains this mapping, transparent to the user.

¢ The external-conceptual mapping specifies how external views
are linked to the conceptual level. In effect, this is achieved by
application programs and logical views via the host language and
the DSL.

It must be borne in mind that these levels are abstractions that facilitate
understanding of the DBS environment. As an end user, you will most likely not visibly
observe these levels of architecture. However, if as a software engineer, you find yourself
on a software engineering team that is constructing or maintaining a DBMS (a huge
undertaking), knowledge of these abstractions becomes critical.

2.3 The Database Administrator

The database administrator (DBA) has overall responsibility for the control of the system
at the technical level. Some of the functions of the DBA include:

[]

.

.

.

[]

]

Defining the conceptual schema (i.e. logical database design)
Defining the internal schema (i.e. physical database design)

Liaising with users and identifying / defining views to facilitate
the external schema

Defining security and integrity checks
Defining backup and recovery procedures

Monitoring performance and responding to changing requirements

In many organizations, the tendency is to include these functions in the job
description of the software engineer. This is quite rational and prudent, since good
software engineering includes good database design. However, large corporations that
rely on company database(s) on an on-going basis, usually employ the services of one or
more DBAs. Because of the importance of having reliable databases, DBAs are among the
highest paid information technology (IT) professionals.

2.4 The Database Management System

The database management system (DBMS) is the software that facilitates management
of the database. When a user issues a request via some DSL (for example SQL), it is the
DBMS that interprets the request, executes the appropriate instructions and responds to
the user.

Functions of the DBMS include the following:

e Data definition (relation, dependencies, integrity constraints,
views, etc.)

e Data manipulation (adding, updating, deleting, retrieving,
reorganizing, and aggregating data)

e Data security and integrity checks

e Management of data access (including query optimization),
data recovery and concurrency

e Maintenance of a user-accessible system catalog (data dictionary)

e Support of miscellaneous non-database functions (e.g. utilities
such as copy)

Programming language support

Transaction management (either all updates are made or
none is made)

Backup and recovery services

Communication support (allow the DBMS to integrate with
underlying communications software)

Support for interoperability including open database
connectivity (ODBC), Java database connectivity (JDBC), and
other related issues

Optimum efficiency and performance are the hallmarks of a good DBMS. To
illustrate the critical role of the DBMS, consider the steps involved when an application
program accesses the database:

1. Program-A issues a request to the DBMS (expressed in terms
of sub-schema language);

2. DBMS looks at Program-A sub-schema, schema and physical
description (these information are stored in tables);

3. DBMS determines which files must be accessed, which
records are needed and how access is done;

4. DBMS issues instruction(s) (reads or writes) to the
operating system;

5. Operating system causes data transfer between disk storage
and main memory;

6. DBMS issues moves to transfer required fields;

7. DBMS returns control to Program-A (possibly with a
completion code).

Figure 2-2 provides a graphic representation, but bear in mind that these steps are
carried out automatically, in a manner that is transparent to the user.

Program A Program A Subschema

DEMS @ Database
) | Schema

System Buffer —

&

® © \o

Operating System Physical Database

Database
Descrption

Fipure 2-2, Steps Involved When Application Programs Access a Database

2.5 Components of DBMS Suite

The DBMS is actually a complex conglomeration of software components working
together for a set of common objectives. For the purpose of illustration, we may represent
the essential components of the DBMS as the following:

e DBMS Engine

e Data Definition Subsystem

e User Interface Subsystem

e Application Development Subsystem
e Data Administration Subsystem

e Data Dictionary Subsystem

¢ Data Communications Manager

e Utilities Subsystem

These functional components (illustrated in Figure 2-3) are not necessarily tangibly
identifiable, but they exist to ensure the acceptable performance of the DEMS.

Data Definftion Subzystarm

[User Inerlace Subsyslem
[Applicabion Development Subsystam

[Data Administraten Subsystem

Dala Diclionary Subsysiem

[Dala Communications Manager
[Ublibas Subsystam

DEMS
Engine

-

Figure 2-3. Functional Componenis of a DBMS

<+—# (Operating System
fju]

Requests I

[Operation

Database

2.5.1 The DBMS Engine

The DBEMS engine is the link between all other subsystems and the physical device
(the computer) via the operating system. Some important functions are as follows:

* Provision of direct access to operating system utilities and
programs (e.g. IO requests, data compaction requests,
communication requests etc.)

= Management of file access (and data management) via the
operating system

* Management of data transfer between memory and the system
buffer(s) in order to effect user requests

* Maintenance of overhead data and metadata stored in the data
dictionary (system catalog)

2.5.2 Definition Tools Subsystem

The data definifion subsysiem (DDS or its equivalent) consists of tools and utilities for
defining and changing the structure of the database. The structure includes relational
tables, relationships, constraints, user profiles, overhead data structures, etc.

The DDL (data definition language) is used to define all database objects that make
up the conceptual schema (relations, relationships, constraints, etc.). The DML (data
manipulation language) is used to facilitate manipulation (insert, remove, update, find,
query etc.) of data. The DML usually includes a query language. The DCL (data control
language) is used to set up control environments for data management by the end user.
As mentioned earlier, the DDL, DML and DCL comprise the DSL.

2.5.3 The User Interface Subsystem

The user interface subsystem (UIS or its equivalent) allows users and programs to access
the database via an interactive query language such as SQL and/or the host language.
The traditional interface is command based; however in recent times menus and graphical
user interfaces (GUI) have become more prevalent. Of course, it is not uncommon for
a product to provide the user with all three interfaces (for example Oracle). Other more
sophisticated DBEMS suites may use natural language interface.

The user interface may also include a DBMS-specific programming language
(e.g. FoxPro, Scalable Application Language, and Oracle’s PL/SQL). These languages pertain
only to the DBMS in which they are used. Additionally, the DBMS may support multiple
high level languages such as C++, Java, etc., thus making it more flexible and marketable.

As an example, suppose that a file, Student has fields {[D#, SName, FName, Status, DOB,..} for each record.
Two possable SQL quenes could be.

SELECT ID#, SNAME, FNAME FROM STUDENT WHERE SNAME ="BELL",
SELECT IDH, SMAME, DOB FROM STUDENT WHERE DOB >= 19660101;

A maore datailed stady of SQL will e covered latar in the course

2.5.4 Application Development Subsystem

The application development subsystem (ADS or its equivalent) contains tools for
developing application components such as forms, reports, and menus. In some cases,
it may be merged with the user interface subsystem. Typically, this subsystem provides a
graphical user interface (GUI), which is superimposed on an underlying host language.
The suite may include an automatic code generator (as in Delphi and Team Developer),
or seamless access of the compiler of the host language (as in Oracle).

Other facilities that may be included such as:

e Report writer
e Project manager
e Menu builder

o Graphic data interpreter
p Ip

2.5.5 Data Administration Subsystem

The data administration subsystem (DAS) consists of a collection of utilities that facilitate
effective management of the database. Included in this subsystem are facilities for backup

and recovery, database tuning, and storage management. It is typically used by DBAs as
well as software engineers.

2.5.6 Data Dictionary Subsystem

Also called the system catalog in many systems, the data dictionary (DD) contains
information on the database structure as well relationships among database objects. It is
automatically created and maintained by the DBMS.

The system catalog contains all metadata for the database. It can be queried using
the same commands used to manipulate source data; it is therefore of inestimable value
to the DBAs and software engineers. More will be said about the system catalog later in
the course.

2.5.7 Data Communications Manager

Traditionally, a separate system that is linked to the DBMS, the data communications
manager (DCM) caries out functions such as:

e Handling communication to remote users in a distributed
environment

e Handling messages to and from the DBMS
e Communication with other DBMS suites

Modern systems tend to have this subsystem as an integral part of the DBMS suite.
In short, the data communications manager ensures that the database communicates
effectively with all client requests in a client-server-based environment. Typically, the
server-based portions of the DBMS will be running on machines designated as servers in
the network. All other nodes are then deemed as client nodes that can request database
services from a server. There may be several database servers in the network; also, a node
may act as both a server and a client (provided the essential software components are in
place).

2.5.8 Utilities Subsystem

Utilities are programs that perform various administrative tasks. The wtilities subsystem
consists of various utility programs that are applicable to the database environment.
Examples of utilities are as follows:

L]

Load routines to create initial version of a database from non-
database files

Copy routines for duplicating information

Reorganization routines to reorganize data in the database
File deletion routine(s)

Statistics routines to compute and store file statistics
Backup and recovery utilities

Other utilities (that might have been) developed by application
programimers

2.6 The Front-end and Back-end Perspectives

A DBS can be perceived as a simple two-part structure:

e The Front-end consists of end users, applications and a
programming interface.

¢ The Back-end consists of the actual DBMS and the database.

The front-end system may be on a different machine from the back-end system and
the two connected by a communication network. For example, we may have a front-end
system in Delphi or Java NetBeans, and a back-end system in Oracle, Sybase, MySQL, or
DB2. Figure 2-4 illustrates.

-
3 End Users
=
: I
& <
w :
- Application Programs
[}
3 " :

_ Programming Envirenment
- (r Programming Enviranment
ja%)
% DBMS
=
[=™
o
g <
(1]
3

Database

\

Figure 2-4. Front-end / Back-end Perspective

2.7 Database System Architecture

There may be added benefits of using different machines for the back-end and
front-end system. Figures 2-5 - 2-7 show three possible configurations. Please note
also that various network topologies are applicable to any computer network (network

topology is outside of the scope of this course; however, it is assumed that you are familiar

with such information).

Frogramming
Interface DBEMS

—_— Programming
Applications
EndUsers | (| thﬁam |

Remote Access

Database

Figure 2-5. Back-end and Froni-end Running on Different Machines

Frogramming
Interface

Applications
EndUser | .
Frogramming
Interface
(8} Q
O Q
o o
Applications
EndUser [| Programming
Interface

Datahase

Figure 2-6. One Back-end, Multiple Front-ends

Enid Usars End Users
| Forond | Fronkand
Baciksend Backesnd
L
Dalabass Diatabasa
CammisisIlon
Waracri
End Usars
Frort-end
Backeend
—
Datazasa

Figure 2-7. Distributed System Where Each Machine has both Front-end and Back-end

2.8 Summary and Concluding Remarks

Here is a summary of what has been covered in this chapter:

+ Adatabase system can be construed as having three levels of
architecture: the external, the conceptual and the internal. These
levels are seamlessly interlinked by the DEMS.

s The external level constitutes all the external views that end users

have of the database.

*+ The concepiual level relates to the logical structure of
the database.

+ Theinternal level relates to the physical siructure of the files
making up the database.

The DBA is the official responsible for the planning, construction,
Implementation and administration of the database.

» The DBMS is the software that facilitates creation and
administration of the database.

* Adatabase system can be construed as being comprised of a
front-end system and a back-end system. The back-end system
relates to the actual creation and adminisiration of the database.
The front-end system relates to the creation and administration of
the user interface through which end users access the system.

» By applying the principle of separating front-end from back-end,
we can conceive of various database architectures.

With this background, we are now ready to move ahead and learn more about the
relational database model. You will learn the foundations of the model, and why it is
s0 important.

