HaB4a/sibHa AUCUMUMAIHA

5A3U OAHUX

R J1eKTOp - K.T.H., AOLEHT
baknaH Irop Bcesonoaosuny

Site: baklaniv.at.ua

E-malil: laa@ukr.net

2016-2017

mailto:iaa@ukr.net

Jlekiriag Ne3.

Peassumiiga MoaeJb JaHUX

+ Basic Concepts

¢ Domains

+ Relations

¢ Relational Database System

¢ Identifying, Representing and Implementing Relationships
¢ Relation-Attributes List and Relationship List

¢ Non-relational Approaches

¢ Summary and Concluding Remarks

3.1 Basic Concepts

The relational model is by far the most widely used model for database design. The model
owes its success to the fact that it is firmly founded on mathematical principles (set theory
and linear algebra) which have been tested and proven; like the underlying principles, the
model itself has been tested and proven oven the years. Before we can proceed, there are
some fundamental concepts to be introduced (Figure 3-1):

Entity: An object, concept or thing about which data is stored. Examples include PurchaseOrder, Person,
Course, Department, Program, Student, Enlities are implemenied as tvo=dimensonal lables and ultmately fes

Attributes: Some qualities associaled with the enfity; e.g. Order#, OrderDate and em# of enlity PurchaseOrder;
Dept# & DepiMame of enlity Department. Two synonymous terms for atinbutes are elements and properiies | they
comespond to columns of a table and are ulimataly imolemented as felds of a record.

Entity Set: A sef of related entitizs.

Relationship: An inheren: mapping invahing fwo or more entiiies. Relationships are represented in nelaficns,
Relation: A two-dimensional (tabular} representation of enbilies and relatonships. A binany relstion contains two
aftrbutes; an neary relation contains matributes, & binary relationship invalves an association batween two entities,
an n=ary relationship involves an associalion among n entities. For a more farma! definition, see sechon 3.3

Tuples: Comsspond to rows of the table, or records of 2 fie,

Primary Key: An altrbule or combination of attrbutes for which values uniqusty idenlify uples in the relation. The
primary key is chosen from a sei of candidate keys,

Candidate Keys: Trere may be more than one potential keys of a relation. Each is called a candidale key.
Alternate Key: A candidate key that is not the pimary key.

Foreign Key: An altibute (or combination of alinbules) thal is pamany key in another relation

Domain: A pool of 37 legal valuss from which actual afiibule valuss are drawn.
Cardinality: Mumber of fuples in a relalion, The card nality vares with ime

Degrea: Number of atiributas in 2 relation; also called the arfy, Degree is a'so used o describe the rumbsr of enfilizs
implied by a relsticnship.

Figure 3-1. Basic Concepts

Figure 3-2 provides a list of commonly used relational terms and their informal

equivalents:

Formal Relational Term Informal Equivalents

Entity Ooject conceptua’ized as a table, implemented as a file
Relation As for entity

Tuple Concepiualized as a row, implemented as a record
Atribute Conceplualized as a column, implemented as a field
Cardinality Conceplualized as the number of rows

Deqgres Conceplualized as the number of columns

Damain Concaplualized as 2 pool of legal values

Figure 3-2. Relational Terms and their Informal Equivalents

Figure 3-3 illusirates how the terms are applied. Observe that the idea of entity and
relation seem to be similar. This will be clarified later. For now, assume that similarity.

Degron = §

Entity/Relation: Supplier _
S Number | S Name 5 Phone 5 City Contact 2
5001 ABC Ca 306 123 4587 New York Bruce Jones J
S00z Joras nd HTE B43 4569 Fetamdavile Larry (3rass
5003 Intalong 309 123 4567 Dalroit Sam Raoss
S004 MECS Inc. 876 123 4567 Kingsion Alihea Foster &
S005 Hitzak a'E 123 4567 Lancasiar Sealt Xavier E

=
5025 LM Softwara 308 123 4567 Miami Famsworth Jones P
(\lan-:usﬁj { Cifies)
= -"’-’-_F:-"r-" N:; __H:) — | _\JHFH:;--KHI Domeing
' ApnaCodes Y} e A
S - ———— e
Erifity/ Relation: lnventorylbem

Ml Ibem Mame Weight (Kg) Quantity on Hand
g Crarik Shafl 50,75 3B
002 Head Lamp 1.52 120
003 Pizsans 0.78 13

Entity/Relation: SupplierOfitem
5 Mumber [tem# Default Quantity
S0 1001 036
S04 1003 240
5025 1001 1o
5025 100% 80
S025 1003 340

Figure 3-3. Mustratine Basic Terms

3.2 Domains

A domain is a named set of scalar values from which attribute values are drawn. Scalar
values are non-decomposable (atomic) values.

Each attribute of a relation must be defined on an underlying domain. The attribute
values must come from the underlying domain (as illustrated in Figure 3-3).

Domains are conceptual; they may not be (and usually are not) actually stored in
the database. Rather, the subsets of the domains containing actual attribute values are
stored. Domains are analogous to data types in high level programming languages such
as Pascal, C++, Java, etc.

A composite domain is a combination of simple domains. Whether a composite
domain is used or is replaced by its constituent simple domains, is a design decision that
should follow thoughtful consideration.

Example 1: Date is an excellent illustration of a composite domain, as explained below:

Date 1s a combination of
Year which has range 0 .. 9999

Month which has range 1 .. 12
Day wlich hasrange 1 .31

This domain therefore has a total of 12 * 31 * 10,000 values, but not all values are valid dates.

There can therefore be composite attributes. Composite domains are analogous
to Pascal records and C++ structures. Few systems support composite domains and
composite attributes.

Significance of Domains

An understanding of domains is critical for the following reason: If attributes of different
relations (entities) come from the same domain, then comparisons can be made;

otherwise, comparisons are meaningless.
Example 2: The following illustrations should emphasize the importance of domains:

// Refernng to figure 3.3 and using SQL statements on relations InventoryItem and SupplierOflItem:

/f The following SQL statement is valid:
SELECT * FROM SupplerOfitems SI, Supplier S WHERE SLS_Number = §.S_Number;

/* The followmng SQL statement 15 not a valid SQL statement since attempt i1s being made to compare
attributes (Weight and DefaultQuantity) defined on different domains:*/
SELECT * FROM SuppherOfitems SI, InventoryItem [WHERE SI DefaultQuantitty = I Weight,

3.3 Relations

A relation R on a collection of domains D1, D2, . .. Dn (not necessarily distinct) consists
of two parts — a heading and a body.

The heading consists of a fixed set of attributes, or more precisely,
attribute-domain pairs,

{(A1:D1), (A2:D2), . .. (An:Dn)}

such that each attribute corresponds to exactly one domain and n is the degree
of the relation. Another term used to describe the heading of a relation is the predicate of
the relation.

The body consists of a time-varying set of tuples where each tuple consists of a set of
attribute-value pairs

{(A1:Vil), (A2:Vi2), . .. (An:Vin)} (i=1. .. m)

where m is the number of tuples (cardinality) in the set. The body of the relation is also
sometimes referred to as the proposition of the relation. The proposition defines a set of
tuples whereby for each row in the relation, the respective attributes take on legal values
from their respective domains.

Observe that the definition of a relation appears to be similar to that of an entity.
There are two subtle differences:

e The term relation as used, belongs to the field of relational
systems. We talk about relations because we are discussing the
relational model. Entities on the other hand, describe identifiable
objects and/or situations.

e Entity, as defined does not account for relationships. Relation
on the other hand, accounts for entities as well as relationships.
Thus in the relational model, we represent entities as relations
and (M:M) relationships (between entities) as relations. A binary
relation for instance, has two attributes. If both attributes are
foreign keys and they both constitute the primary key, this binary
relation actually represents a many-to-many relationship
between two referenced relations; otherwise it is (a relation that
can be construed as) an entity. This point will become clear as
we proceed.

The foregoing underscores the point that entities can be construed as special
kinds of relations. In designing a database, the software engineer or database designer

commences by identifying entities during the requirements specification. After further
analysis, these entities are eventually implemented by normalized relations.

Note: A unary relation differs from a domain in the sense that former is dynamic and
the latter static.
3.3.1 Properties of a Relation

Based on the relational model, all relations have the following properties:
e No duplicate tuples (records)
¢ Records are unordered
* Attributes are unordered

 Attribute values are atomic

The first and last properties are constraints that both end users and software engineers
should be cognizant of, since they have to manage data contained in the database; they are
also of interest to the database designer. The second and third properties on the surface
are immaterial to end users as well as software engineers; they are usually enforced by the
DBMS in a manner that is transparent to the end user. However, when the DBMS is written,
concern has to be given to accessing of records. Further, DBMS suites are typically written to
give the illusion that the attributes of a relation are ordered.

3.3.2 Kinds of Relations

A database will consist of various types of relations, some of them at different stages of the
system. The common categories of relations are mentioned below:

1. Base Relations are named and permanently represented in
the database. They make up the conceptual schema of the
database; they form the foundation of the database.

2. Views (virtual relations) are derived from named (base)
relations. A view stores the definition of the virtual relation
(derived from base relations), but stores no physical data. It is
simply a logical (conceptual/external) interpretation of data
stored in base relations. SQL views and System i logical files
are good examples of views.

3. Snapshots are named, derived relations. They differ from
logical views in that they are represented in terms of definition
as well as physically stored data. From the perspective of the
end user, a snapshot relation is typically (but not necessarily)
read-only. To illustrate, consider two systems — System-A
and System-B — which both need to access a database table,
Table-X. Suppose that System-A has update rights to Table-X,
but System-B does not. Table-X is therefore stored in
System-A's database; a duplicate version for read-only
purposes, is stored in System-B, and is periodically updated
(without user interference) from System-A.

Query Results: Queries are typically entered at a command
prompt (they may be also embedded in high level language
programs or stored in special query files). Results may be
directed to screen, printer, or a named relation. An important
principle to note is that a query when executed always results
in a new relation. This principle will be elucidated later in the
COurse.

Intermediate Results: The DBMS may create an intermediate
relation to assist in furnishing a final answer to a complex
query request. This will also be elucidated later in the course.

Temporary Relations are named relations that are destroyed
at some point in time.

3.4 Relational Database System

A relational database system (RDBS) is a collection of time-varying normalized relations,
managed through an appropriate user interface, and with desirable constraints and
features that enhance the effective, efficient management of the database. These
desirable features and constraints will be discussed (see chapter 9) as we progress
through the course. The term normalized relations will be fully clarified in chapter 4; for
now, just consider it to mean that the relations are designed to promote efficiency and
accessibility.

The relations are conceptualized as tables and ultimately implemented as files.
Each relation contains one and only one record type. Each relation has a primary key
(chosen from a set of candidate keys). In many cases, the primary key is obvious and can
be identified intuitively. In situations where this is not the case, the database designer,
based on principles to be discussed in the next chapter, typically takes decision about the
primary key.

Each record type is made up of afomic aftribufes. This means that each attribute is
defined on a single domain, and can only have a value from that domain. Moreover, when
data is loaded into the database, each record from any given table has a unique primary
key value.

Superimposed on the database is a user interface that facilitates access of the
database by end users. The database and the user interface are designed to ensure that
certain objectives are met (section 1.2) and established standards are conformed to.

Steps in Building a Relational Database System
In constructing a RDBS, the following steps may be pursued:

a. Identify entities

b. Identify relationships

c. Eliminate unnecessary relationships

d. Develop entity-relationship diagram (ERD), object-
relationship diagram (ORD) or some equivalent model

e. Normalize the database
f. Revise E-R diagram, O-R diagram, or the equivalent model used
g. Design the user interface

Proceed to development phase

3.5 ldentifying, Representing, and Implementing
Relationships

As mentioned earlier, a relationship is an inherent mapping involving two or more
relations. In planning a relational database, it is very important to know how to
identify and represent relationships. Of course, the ultimate objective is successful
implementation of the model. Let us take some time to discuss these issues:

3.5.1 Identifying Relationships

To identify relationships, you have to know what a relationship is (review section 3.1) and
what types of relationships there are. There are six types of relationships:

e One-to-one (1:1) Relationship

¢ One-to-many (1:M) Relationship

e Many-to-one (M:1) Relationship

¢ Many-to-many (M:M) Relationship
¢ Component Relationship

e Subtype Relationship

The first four types of relationships are referred to as traditional relationships
because up until object model (for database design) gained preeminence, they were
essentially the kinds of relationships that were facilitated by the relational model. Observe
also, that the only difference between a 1:M relationship and an M:1 relation is a matter
of perspective; thus, a 1:M relationship may also be described as an M:1 relationship (so
that in practice, there are really three types of traditional relationships). Put another way:

IfR1, R2 are two relations and there is a 1:M relationship between R1 and R2, an alternate way
of describing this situation is to say that there is an M:1 relationship between R2 and R1.

For traditional relationships, to determine the type of relationship between two
relations (entities) R1 and R2, ask and determine the answer to the following questions:

¢ How many records of R1 can reference a single record of R2?
¢« How many records of R2 can reference a single record of R1?

To test for a component relationship between any two relations R1 and R2, ask and
determine the answer to the following questions:

¢ Is(arecord of) R1 composed of (a record of) R2?

¢ Is(arecord of) R2 composed of (a record of) R1?

For a subtype relationship, the test is a bit more detailed; for relations R1 and R2, ask
and determine the answer to the following questions:

e Is(arecord of) Rl also a (a record of) R2?
e Is(arecord of) R2 also a (arecord of) R1?

Possible answers to these questions are always, sometimes, or never. The
possibilities are shown below:

R1 always R2, R2 always R1

R1 always R2. R2 sometimes R.1

R1 always R2. R2 never R1

R1 sometimes R2. R2 always R1

R1 sometimes R2, R2 sometimes R1
R1 sometimes R2, R2 never R1

R1 never R2. R2 always R1

R1 never B2, R2 sometimes E.1

Rl never B2, R2 never R1

R1 and R2 are synonymous
R1 is a subtype of R2
Makes no sense

R21s a sub-type of R1
Inconclusive

Makes no sense

Makes no sense

Makes no sense

No subtype relationship

vyduuuuul

3.5.2 Representing Relationships

Having identified the entities and relationships, the next logical question is, how do

we represent them? Four approaches have been used: database hierarchies, simple
networks, complex networks, the entity-relationship model and the object-relationship
model. The first three approaches are traditional approaches that have made way for the
more reputed latter two approaches. We will therefore start by discussing the latter two
approaches.

The Entity-Relationship Model

The popular answer to this challenge of database representation is the entity-relationship
diagram (ERD or E-R diagram). Figure 3-4a shows the symbols used in an ERD, while
Figure 3-4b provides an illustration based on the Crows-Foot notation. In the diagram,
the convention to show attributes of each entity has been relaxed, thus avoiding clutter.
Note also that relationships are labeled as verbs so that in linking one entity to another,
one can read an entity-verb-entity formulation. If the verb is on the right or above the
relationship line, the convention is to read from top-to-bottom or left-to-right. If the verb
is on the left or below the relationship line, the convention is to read from bottom-to-top

or right-to-left.

.
L

Or 1:M Relationship 3

Crow's

‘% Or j M:1 Relationship L Fool
1
]

Motation
:’} - O [M:M Relationship
J
1:1 Relationship

A | B B iz a sublype of A
A [B B is a companent of A
P q Alternate relationship symbol for 1:0, M:1, and

= > M:M relationships (Chen's Notation)

Note: The original Crow's Foot notation uses the fiangular shaped “crow's fool.” However, the more
sguare-on appearance has been infroduced here because as you will soon realize, in the absence of 3
good CASE tool, it is easier to draw using a fypical text editar,

Figure 3-4a. Symbols Used in E-R Diagrams

Puschases) =,
|:,—
. £
R P-Clontaing
) = E
] ¥
L
Sands m,_4;| PurzhassOrder
Suppter sugons .
] Supplied By i Wsadin Projeet
- -

- Looation s Departmant
O-Bihualed
Fiota:
1 BirEudve atw ol 0w, Fir compin ncheirg on I ERD)
2 Theracas be selnfionahps irroving mora Hhae e eniie, b ony sninfines hips mre nokuded i e ERD.

Figure 3-db. Partial ERD for Manufacturing Firm

The ERD is normally used to show binary relationships but can also show n-ary
relationships. In many cases, E-R diagrams show only binary relationships. For example,
a possible ternary relationship not shown in Figure 3-4b is Supplier-Schedule (linking
Supplier, Inventoryltem and Project). The reason for this is the following principle:

All relationships of degree greater than 2 can be decomposed to a set of binary relationships. This may
or may not be required.

The proof for this principle is beyond the scope of this course. However, we shall revisit
it later, and provide additional clarifications. For now, a simple illustration will suffice:
Figure 3-5 shows how the ternary Supplier-Schedule relationship may be broken down
into three binary relationships. Since care must be taken in applying this principle, it will be
further discussed in the next chapter.

Supplier-Schedule
Supplier :} { Project
[nventaryliem
Decomposes to:
SupplierOfProjects
) .])
Supplier = <] Project
N/ N/
= Inventaryltem ~~
IlemSuppharMap ~ Projectltamiap

Figure 3-5. Decomposing a Ternary Relationship

The Object-Relationship Model

As you are aware, or will soon learn (from your software engineering course), there are,
broadly speaking, two alternate paradigms for software construction: the functional
approach (which is the traditional approach) and the object-oriented (0OO) approach. In
an object-oriented environment, the comparative methodology for the E-R diagram is the
object-relationship diagram (ORD or O-R diagram). The concept of an ORD is similar to
that of an ERD, and the diagrams are also similar, but there are a few exceptions:

e Inthe OO paradigm, the object type replaces the entity (type) of
the relational model. Like the entity, an object type is a concept
or thing about which data is stored. Additionally, the object type
defines a set of operations, which will be applicable to all objects
(instances) of that type.

e The symbol used to denote an object type is similar to an
entity symbol, except that it has two extended areas — one for
the attributes of the object type, and the other for its defined
operations.

¢ The preferred diagramming convention is the UML
(Unified Modeling Language) notation.

¢ Depending on the OO development tool, there might be
additional notations regarding the cardinality (more precisely,
multiplicity) of the relationships represented.

A full treatment of the OO approach is beyond the scope of this course. You are
no doubt familiar with using UML diagrams in your OO programming courses. For a
quick review of the fundamentals, please see references [Lee, 2002] and [Martin, 1993].
However, in the interest of comprehensive coverage, an overview of the approach is
provided in chapters 5 and 23.

Database Tree

A database tree (hierarchy) is a traditional alternative, which used to be employed prior to
the introduction or the E-R model; it was successfully employed in a system called RAMIS
(the original acronym stands for “Random Access Management Information System”).

A database tree (hierarchy) is a collection of entities and 1:M relationships arranged such
that the following conditions hold:

¢ The root has no parent
e Each subsequent node has a single parent

Figure 3-6 illustrates a database hierarchy. Observe that it looks like a general tree
(review your data structures). Except for the root (node A), each node has a parent node
that it references. Note also that all the relationships are 1:M relationships (traditionally
referred to as parent-child relationships).

1] [1]

B C
[T [T1 [11]
D E F

Figure 3-6. Example of a Hierarchy (Tree)

Database Networks

The database network approach is another traditional approach that is no longer
employed. In the interest of historical context, a brief overview is provided here. A simple
database network is a collection of entities and 1:M relationships arranged such that

any member can have multiple parents, providing that the parents are different entities.
Figure 3-7 illustrates the approach. It was successfully employed in a DBMS called the
CODASYL system (the original CODASYL acronym stands for “Conference on Data
Systems Languages”).

A] B
L
11 11 11
D] C
|

Figure 3-7. A Simple Network

A complex database network is a collection of entities and relationships, at least
one of the relationships being an M:M relationship. Figure 3-8 illustrates. The complex
network can be reduced to a simple network by replacing all M:M relationships with M:1
relationships. The technique for replacing M:M relationships will be discussed in the
upcoming subsection.

Figure 3-8. Complex Network

3.5.3 Multiplicity of Relationships

It is customary to indicate on the ERD (or ORD), the multiplicity (also called the
cardinality) of each relationship. By this we mean, how many occurrences of one entity
(or object type) can be associated with one occurrence of the other entity (or object type).
This information is particularly useful when the system is being constructed. Moreover,
violation of multiplicity constraints could put the integrity of the system is question,
which of course is undesirable. Usually, the DBMS does not facilitate enforcement of
multiplicity constraints at the database level. Rather, they are typically enforced at the
application level by the software engineer.

Several notations for multiplicity have been proposed, but the Chen notation (first
published in 1976, and reiterated in [Chen, 1994]) is particularly clear; it is paraphrased
here: Place beside each entity (or object type), two numbers [x,y|. The first number (x)
indicates the minimum participation, while the second (y) indicates the maximum
participation.

An alternate notation is to use two additional symbols along with the Crow’s Foot
notation: an open circle to indicate a participation of zero, and a stroke (|) to indicate a
participation of 1. The maximum participation is always indicated nearest to the entity (or
object type) box.

For convenience, you could also use the Chen’s notation for multiplicity, along
with the Crow’s Foot notation for representing the relationships. The Chen notation
is preferred because of its clarity and the amount of information it conveys. Figure 3-9
provides an illustrative comparison of the two notations.

Employee

Pl N

Employes

|

Dependent

Dependent

Department

Depariment

|

Emplayee

Employes

[0.M]

[1.1]

[1.M]

[1.1]

Meaning:

An employee could have
2aro of many dependents; a
dependent has ane and only
one associated employes.

Meaning:

A depariment could have one
or many employees; an
employee belongs to one and
only one depariment,

Figure 3-9. Ilustrating Multiplicity Notations

3.5.4 Implementing Relationships

Assuming the E-R model, relationships can be implemented by following a set of
guidelines as outlined below:

To implement a 1:M relationship, store the primary key of one as a foreign key of the other (foreign key
must be on the “many side™). Figures 3.13 and 3. 14 illustrate (there is a M:1 relationship between
Supplicrs and Locations: there are others that you should identify).

To implement an M:M relationship, introduce a third intersecting (1:M) relation. The new relation is
usually keyed on all the forsign keys (or a swrvogate #). Also, the original relations/entities fonm 1:M
relationships with the intersecting relation (figure 3.10 illustrates).

To implement a subtype relationship. introduce a foreign key in the subtype. which is the primary
key in the referenced super-type. Further, make the foreign key in the subtype, the primary key of
that subtype. In the case of multiple inheritance (where a subtype has more than one super-types).
make the introduced foreign keys in the subtype, candidate keys, one of which will be the primary
key. Figures 3.11 and 3.12 illustrate this strategy.

To implement a component relationship, introduce in the component relation, a foreign Key that is
the primary key in the sunumary relation. This foreign key will form part of the primary key (or a
candidate key) in the component relation. Figures 3.11 and 3.12 illustrate this strategy.

To implement a 1:1 relationship, introduce a foreign key in one relation (preferably the primary relation)
such that the primary key of one is an attribute in the other. Then enforce a constraint that forbids
multiple foreign keys referencing a single primary key. Alternately, treat the 1:1 relationship as a
subtype relationship (but ignore enforcing inheritance).

The foregoing strategies should underscore forcefully in your mind, the importance
of foreign keys in database design. In fact, foreign keys are referred to as the “glue” that
holds the database together. We shall revisit this concept in the next chapter.

In many textbooks and database environment, you will see and/or hear the
term parent-child relationship. This is a rather lame term, borrowed from preexisting
hierarchical database systems, to describe 1:1 and 1:M relationships. In a parent-child
relationship, the parent relation is the referenced relation; the child relation is the
referencing relation. Throughout this course, these terms are avoided because they are
rather confusing, and do not accurately describe several scenarios involving 1:1 and/or
1:M relationships. Alternately, we will use no euphemism for 1:1 and 1:M relationships;
instead of parent relation, we'll say the referenced relation; instead of child relation, we
say primary relation or referencing relation.

[]]
[11

Machine Project

Is replaced with:

Machine

MapMP Froject

[11
L1

P @ 0 0

Primary Key Frimary Key Primary Key

Figure 3-10. Implementing M:M Relationships

ColegaMambear

Memberlods
Jumame

Sludent

Major
GRA

Fre=hHama
Birth-Jisla

Y

SludenlEmploryes

Fislatesdh Proy et

Employee

JobeTithe
Saary-Grade

EmployesPersanalino

EmgleymaEmpioymaniHistory

EmployeeAmademiclog

EmployeaPublicatons

EmployeaExraCumicular

Employeslependentslog

LI T T TT

Nata: The top thres andities incude atiibules of fe enflties wia the LUIML comventon, With the right modieling
tools, you would include atributes for each enfty. However, this clusers the diagram, particularly as the

ayalem becomes laner and mone camgies, Foe praclcal reasang therslore, (his pracios & nal lalowed hars,
Saen seclion 18 for furfwee darficalon on this

Figure 3-11. Hlustrating Subtype and Component Relationships

Relation

Attributes

College Member

MemberCode, Surname, First-Name, BirthDate, ...

Student MemberCode, Major, GPA, ...
Employee MemberCode, JobTitle, SalaryGrade, ...
StudentEmployee MemberCode, Related-Project

EmployeePersonallnfo

MemberCode, Address, Telephone, ...

EmployeeEmploymentHistory

MemberCode, JobSequence, Organization, ...

EmployeeAcademicLog

MemberCode, LogSequence, Institution, Period-Attended, Award, ...

EmployeePublications

MemberCode, PublCode, Title, Book-Journal-Flag, ...

EmployeeExtraCurricular

MemberCode, ActivityCode, Activity-Description, ...

Note:

1. Primary key attributes and foreign key atiributes are in italics.
2. This is not a comprehensive RAL. For several of the relations included, there are additional atiributes to be added
{Indicated by the three penods in the atiributes column).

Figure 3-12. Illustrating the Implementation of Subtype and Component Relationships

3.6 The Relation-Attributes List and
Relationship List

In large, complex information systems projects, it is often impractical to attempt to
develop and maintain ERDs, unless they are automatically generated and maintained by
computer-aided software engineering (CASE) tools (more on these in chapter 5). Even
when maintained by CASE tools, an ERD for such a project could become large, spanning
several pages. Reading and interpretation then becomes difficult.

To circumvent the above challenges, a Relation-Attribute List (RAL) and a Relationship
List (RL) may be constructed and maintained. The former maintains information on
all relations of the system and the latter maintains information on all relationships
implemented in the system. Figures 3-13 and 3-14 illustrate partial RAL and RL for the
database model of Figure 3-4b. As you examine these figures, please note the following:

L

In practice, the format of the RL shown in Figure 3-14b is used as
the final list over the format shown in Figure 3-14a (the format
used in Figure 3-14a can be deduced by simply identifying all
possible relationships among entities; hence, it may contain
optional relationships and is therefore useful as a first draft).

The revised RL of Figure 3-14b has been stripped of all M:M
relationships (review section 3.5.4 on treating M: M relationships).

The relations PurchaseInvSummary and PurchaselnvDetail of
Figure 3-13, are used to replace the M:M relationship between
Purchaselnvoice and Inventoryltem in Figure 3-4b. Similarly,
the relations PurchaseOrdSummary and PurchaseOrdDetail
are used to replace the M:M relationship between
PurchaseOrder and Inventoryltem in Figure 3-4b.

In constructing the RAL and RL, it is sometimes useful to use the
RL to refine the RAL and vice versa. In particular, once you have
identified all the (mandatory) relationships, you may use this along
with the principles outlined in section 3.5.4 to refine the RAL.

Remember, the model of Figure 3-4b, RAL of Figure 3-13, and the
RL of Figure 3-14 do not represent a comprehensive coverage of
the database requirements of a manufacturing firm; neither are
they intended to be. Rather, they serve as useful illustrations.

Rlatior Astribules

Custnfot Condll, Costbinme, Addiess . Falsfanos Paron, ..

Suppher Suppl, SupplName, Addnss, Supnllool, .

Machine baor¥, MacheDesoriphion

Project P, Projhama, Proanagartmes,

Warnhosa Whoises WoouseMame, Whousebae, Whouselosf

Irtssimicryilem Bamet, [tembams, ..

Libaza it Loos, Losssbionbara, DstanceFromHd, .

Depariment Depi¥, Depiiams, Dol ook, .

Emploiyen Empll, Emzhame, EmgProll, EvipDapth, DOA, ..

PurchaseCrdSummary Crovaf, Ordend, OrderDale, OdarSunal¥, Ordoritals, ...

PurchaseCrDalad PO Crondens, OrdorDuantty, OrdorlniPrion

FurthasaimSummary PorchasaRiaf, imoice¥, Inuped, invOmprtal InvOade, Iwdmeurs

Irritatus, .

PuischarselrryDelai A0PurshaseRal. FIDWsel. FIDRemCuartty, FIDbsmiiniPrhics

Salnlwiummany Zalaifef, Ellmeoicel, Salelals, SepCusi¥, InvoceSahes, Salofmount, .

Sael-vDohi HiEalefe Sahitem# Cuantity, UnitProe

Machine.isaga AL, MUtems

MachFronds PG MPPro®

FrofSapp PSS5upplt, PEPog

liamPry IPfled, (FFrof

Sugplisnms H5mpd, Sinod

Sinck Eouss, Seml

lamGiu 15 Thiskamd, 15Complamd

Employen®orsonallnfo EPIEmae, Marilal Satus, Address, Telephone, Emall

EmployeeEmployment-fisiony EMEmpE, EHAcbSasvance, Organizaton, Tie,

Employaadzadamicl o ALFmps, Al cgSeguance. Insthiton, ParisaAtanded. Awand,

EmploysaPusicatons EFEmpe. FubiCsoe THe. BeokleumalFag

EffigleyaaEalraCumclsi ExFrigl. EXAcivityCodh AdhviyDoesciplon

Node:

1, Primary kay atnéues and e key siDufes am in dakcs

2. This s nol 8 compmhamive RAL For seveesl of he relabons isduded, hes ors addlional alitulss 1o be
adied {indicariod by i thra pariods in the atrizutes colmn), &so, acdional ralations would ba requin in
order o Fava & comprshessva modsl {ndcales by e e paniads in he previcus fow)

1. Forach miaton, an afford is made o keep afribule names unique {io the ondim datzbasa), even if Fa
afribiute & & lorsign ey, Foeinstancs, in e relalon Empleryes, the atitbuts EmpDepd® | a foreign key that
references Dopt¥ in the relalion Deparfmant. This convention applies for al foreign “I'r'!-

4, The atirbuias OrderRed (0 PurchaseDndSommary relalon), PurchasaRed | n Purchasal
ralalicn| and SaleRef {in SaanSummurr relafion) are examples of summogales. Sulmgum wil b-n'rm
thercughly dscessed in chapher &

Figure 3-13. Partial Relation-Attributes List for a Manufecturing Firm’s Database

Relationship Name Participating Relations Type Comment
SuppliedBy Supplier, Inventoryltern MM Mandatory
Purchases Customer, Inventoryltem MM Mandatory
Uses Machine, Inventoryltem M:M Mandatory
Useddn Inventoryltem, Project MM Mandatory
M-Used-In Machine, Project M:M Mandatory
Stores Warehouse, Inventoryltern M:M Mandatory
Contains Inventoryltem, Inventoryltem MM Mandatory
Assigned Employee, Project M:1 Mandatory
Belongs Employee, Department M:1 Mandatory
D-Situated Location, Department 1:M Mandatory
W-Situated Warehouse, Location 1:1 Mandatory
S-Situated Supplier, Location 1.1 Mandatory
Sends Supplier, Purchaselnvoice M:M Mandatory
HContains Purchaselnvoice, Inventaryltem MM Mandatory
RequesiedOn PurchaseOrder, Inventoryltem M:M Mandatory
Receives Supplier, PurchaseQrder 1:M Mandatory
Supports Supplier, Project M:M Mandatory
SupplierSchedule Supplier, Inventoryltem, Project MM Optional

ComposedOf Employee, EmployeePersonalinfo, Comp Mandatory

EmployeeEmploymentHisiory,
EmployeeAcademicLog,
EmployeePublications,
EmployeeExtraCurricular

Figure 3-14a. Relationships List for a Manufacturing Firm's Database

Mamad Rala Iype | Gom
M rmglamants reabonshin By
M rplamiarnis raiabioeship Pus
iz flas M1 regbaracts sl oy PusZases
PuchassireSummany Guppher M mplemants rekalonstips Serds and klontsing
Purchas e Dotal Purthasel raSermnary M rmpdamiaris rekrieship WConkairs
meatlorias 'E] rpkamarts kst Woonlain
Viachrelisage [Machine [81 | implamants mladonstip Uses
| imeatiorgias [| imgsomanis edatonsrip L,
MachPrects | Machina [M1 | Imglemania mkaionakip W ek
| Prosect [M1 | implomants misfonship Wiseden
Purchassnd Susrmasy Bispplme M rglamiachs iebalionatin Rimaress a5
ReguostedOn
stk | T e Bt Aty R T e e
meaioyiss] mpkamacts ekrianstip Fegeesisctn
Buzphy | Location [| imphamarts mladonsrip SEuaie
Sunloms | Suppher [W1 [imclamants miadonstip Suppeddy
| imearioras [| irghamants rebasonstin SoppiatSy
Sroy5usp [Suzpler [[imclaments misdonstip Suppons
| Prect | Al | raphimerts reladonahip Suppors
lanfy | w1 [imglomants rlrdonship Lsodin
| imatioryitas [| irgkaants rbadonstip s
ok | Warsnouns [M1 | implamanis ebsionship Sioes
| meaniorfilzs |8 | imcloments mladonsnip Sioses
snSined | mniorpies [81 | Imglamanis mbsionship Contine
| mesmlanpia= [t | ircssmarnis mimsonsrp Comans
Emploves | Pt [Wi | implsnarts mlyiorstip fuesmones
| Depatment [t | imgiamarts miatonsrip Boiangs
Warkdooii | Lecation o0 T irghanants relaionsti WSl
| Location [11 | imglemacts mbrionstip Dudiusted
Empovee] mplamarts ekrionship Composec!
Emyioyaa 'Rl rapkamaris elaiotah CoTpeessiat
Empioven M mplamants rebionship Compossdd
Empioyes v mpksmiants rekrdanstip Compossotd
i M1 regdamash kil C)

Figure 3-14b. Refined Relatiorships List for a Marufacturing Firm’s Database

3.7 Non-Relational Approaches

Prior to development of the relational model, the following approaches used to be employed:
e Inverted List Approach: Exemplified by DATACOM/DB

e Hierarchical Approach: Exemplified by Information Management
System (IMS) database and the Random Access Management
Information System (RAMIS)

e Network Approach: Exemplified by Conference on Data Systems
Languages (CODASYL) initiative and Integrated Database
Management System (IDMS) initiative

The strengths of the relational approach when compared to these approaches are its
sound mathematical base, its flexibility, robustness, and simplicity.

In recent times, the object oriented (00) model has been challenging the relational
model on performance and efficiency for certain scenarios. Nonetheless, we expect that
the two technologies will continue to peaceably coexist; huge investments have been
made in relational database systems, and it is not likely that these will be abandoned.
What is more likely to happen is that systems will be built based on relational databases,
with object oriented user interfaces superimposed.

3.8 Summary and Concluding Remarks

Let us summarize what we have covered in this very important chapter:

The relational database model is based on a number of
fundamental concepts relating to the following: entity, entity set,
relation, relationship, tuple, candidate key, primary key, alternate
key, foreign key, domain, cardinality, degree.

A domain is a named set of scalar values from which attribute
values are drawn.

A relation consists of a heading and a body. The heading consists
of atomic attributes defined on specific domains. The body
consists of a set of attribute-values pairs, where each attribute has
a value drawn from its domain.

In a database system, you are likely to find any combination of the
following types of relations: base relations, logical views, snapshots,
query results, intermediate results, and temporary relations.

A relational database system (RDBS) is a collection of time-varying
normalized relations, managed through an appropriate user
interface, and with desirable constraints and features that enhance
the effective, efficient management of the database.

A relationship is an inherent mapping involving two or more
relations. There are six types of relationships: one-to-one (1:1)
relationship, one-to-many (1:M) relationship, many-to-one (M:1)
relationship, many-to-many (M:M) relationship, component
relationship, and subtype relationship.

An E-R diagram (ERD) is a graphical representation of a database
model. It is important to know how to represent relations/entities
and relationships on the ERD.

It is important to know how to implement the various types of
relationships in the actual database design.

The relation-attributes list (RAL) and relationship list (RL) are
two useful alternatives to the E-R diagram, especially for large,
complex systems.

Database approaches that preexisted the relational approach
include the inverted-list approach, the hierarchical approach and
the network approach.

A contemporary alternative to the relational approach is the
object-oriented approach. However, given the efficacy of both
approaches, it is more likely that they will complement each other
in the future, rather than compete against each other.

Take the time to go over this chapter more than once if you need to, and make
sure that you are comfortable with the concepts covered. In the upcoming chapter, we
will build on the information covered in this chapter, as we discuss integrity rules and
normalization. These two topics form the foundation for the rest of the course.

