HaB4a/sibHa AUCUMUMAIHA

5A3U OAHUX

R J1eKTOp - K.T.H., AOLEHT
baknaH Irop Bcesonoaosuny

Site: baklaniv.at.ua

E-malil: laa@ukr.net

2016-2017

mailto:iaa@ukr.net

Jlekmiss Ne4.

IIpaBuja mIicHOCTI TA
HOpMAaJIi3alisa

In order to design high quality databases, you need to be cognizant of the fundamental
integrity and normalization rules. We will discuss these rules in this chapter. Sub-topics
to be discussed include:

¢ Fundamental Integrity Rules
 Foreign Key Concept

* Rationale for Normalization
 Functional Dependence and Non-loss Decomposition
e First Normal Form

e Second Normal Form

e Third Normal Form

e Boyce/Codd Normal Form

* Fourth Normal Form

+ Fifth Normal Form

e Other Normal Forms

e Summary and Concluding Remarks

4.1 Fundamental Integrity Rules

Two fundamental integrity rules that the database designer must be cognizant of are the
entity integrity rule and the referential integrity rule.

Entity Integrity Rule: The entity integrity rule states that no component of the
primary key in a base relation is allowed to accept nulls. Put another way, in a relational

model, we never record information about something that we cannot identify. Three
points are worth noting here:

e The rule applies to base relations.

¢ The rule applies to primary key, not alternate keys.

¢ The primary key must be wholly non-null.

Referential Integrity Rule: The referential integrity rule states that the database
must not contain unmatched foreign key values. By unmatched foreign key value, we
mean a non-null foreign key value for which there is no match in the referenced (target)
relation. Put another way, if B references A then A must exist. The following points should
be noted:

e The rule requires that foreign keys must match primary keys, not
alternate keys.

¢ Foreign key and referential integrity are defined in terms of
each other. It is not possible to explain one without mentioning
the other.

4.2 Foreign Key Concept

The concept of a foreign key was introduced in the previous chapter. Let us revisit this
concept, by introducing a more formal definition:

Attribute FK of base relation B2 is a foreign Key if and only if (denoted iff from this point) it satisfies the
following conditions:

a. Eachwvalue of FK is either wholly null or wholly non-null.

b. There exists a base relation, R1 with primary key PK such that each non-null value of FK is identical
to the value of PK in some tuple of R1.

We will use the notation R1 - R2 to mean, the relation R1 references the relation R2.
In this case, R1 is the referencing (primary) relation and R2 is the referenced relation.
Since R1 is the referencing relation, it contains a foreign key. We will also use the notion
R1{A, B, C, ...} to mean, the relation R1 contains attributes A, B, C, and so on. Where
specific examples are given, the relation-name will be highlighted or placed in upper
case; attribute-names of specific examples will not be highlighted when stated with the
related relation; however, they will be highlighted when reference is made to them from

the body of the text.

Based on the definition of a foreign key, the following consequential points should
be noted:

1. The foreign key and the referenced primary key must be
defined on the same domain. However, the attribute-names
can be different (some implementations of SQL may require
that they be identical).

2. The foreign key need not be a component of the primary key
for the host (holding) relation (in which case nulls may be
accepted, but only with the understanding that they will be
subsequently updated).

3. Ifrelations Rn, R(n-1), R(n-2) R1 are such that
Rn - R(n-1) > R(n-2) > R2 > R1 then the chain Rn to R1
forms a referential path.

4. Arelation can be both referenced and referencing. Consider

the referential path R3 = R2 > R1. In this case, R2 is both a
referenced and a referencing relation.

We can have a self-referencing relation. Consider for example,
the relation Employee{Emp#, EmpName MgrEmployee#}
with primary key [Emp#|where attribute MgrEmp# is a
foreign key defined on the relation Employee. In this case we
have a self-referencing relation.

More generally, a referential cycle exists when there is a
referential path from Rn to itself: Rn > R(n-1) > ... R1 > Rn

Foreign-to-primary-key matches are said to be the “glue”
that holds the database together. As you will see, relations are
joined based on foreign keys.

Deletion of Referenced Tuples

Now that we have established the importance of foreign keys, we need to address a
question: How will we treat deletion of referenced tuples? Three alternatives exist.

e Restrict deletion to tuples that are not referenced.
¢ Cascade deletion to all referencing tuples in referencing relations.

e Allow the deletion but nullify all referencing foreign keys in
referencing relations.

The third approach is particularly irresponsible, as it could quite quickly put the
integrity of the database in question, by introducing erphan records. Traditionally, DBMS
suites implement the restriction strategy (and for good reasons). The cascading strategy
has been surfacing in contemporary systems, as an optional feature. It must be used with
much care, as it is potentially dangerous when used without discretion.

4.3 Rationale for Normalization

Normalization is the process of ensuring that the database (conceptual schema) is
defined in such a manner as to ensure efficiency and ease of data access. Normalization
ensures the following:

¢ Data integrity
¢ Control of redundancy
¢ Logical data independence

¢ Avoidance of modification anomalies

The following problems can be experienced from having un-normalized files
in a system:

e Dataredundancy that leads to the modification anomalies
¢ Modification anomalies which include:

v Insertion anomaly: Data cannot be inserted when it is
desirable; one has to wait on some future data, due to
organization of the data structure

v Deletion anomaly: Deletion of some undesirable aspect(s)
of data necessarily means deletion of some other desirable
aspect(s) of data

v Update anomaly: Update of some aspect(s) of data
necessarily means update of other aspect(s) of data

e Inefficient file manipulation; lack of ease of data access
¢ Inhibition to the achievement of logical data independence
e Compromise on the integrity of data

e Pressure on programming effort to make up for the poor design

Figure 4-1 indicates the six most commonly used normal forms. The hierarchy is
such that a relation in a given normal form is automatically in all normal forms prior to it.
Thus a relation in the second normal form (2NF) is automatically in the first normal form
(1NF); a relation in the third normal form (3NF) is in 2NF and so on. Edgar Frank Codd
defined the first three normal forms in the early 1970s; the Boyce-Codd normal form
(BCNF) was subsequently deduced from his work. The fourth and fifth normal forms
(4NF and 5NF) were subsequently defined by Ronald Fagin in the late 1970s.

SMF Relations

4NF Relations

BCNF Relations

INF Relations

2ZNF Relations

1NF Relations

Increased
Requirements

Reduced
Requirements

5NF Relations

dNF Relations

BCNF Relations

3NF Relations

ZNF Relations

1NF Relations

Fewer
Relations

More
Relations

Figure 4-1. Normal Forms

The normalization procedure involves decomposing relations into other relations of
repeatedly higher normal forms. The process is reversible. Moreover, normalization must

be conducted in a manner that ensures that there is no loss of information.

4.4 Functional Dependence and Non-loss
Decomposition

Before discussion of the normal forms, we need to define and clarify two fundamental
concepts: functional dependence and non-loss decomposition.

4.4.1 Functional Dependence

Given a relation, R{A, B, C, ...}, then attribute B is functionally dependent on attribute
A, written A > B (read as “A determines B") if and only if (denoted iff from this point
onwards) each value of A in R has precisely one B-value in R at any point in time.
Attributes A and B may or may not be composite.

An alternate way to describe functional dependence (FD) is as follows: Given a value
of attribute A, one can deduce a value for attribute B since any two tuples which agree on
A must necessarily agree on B.

Example 1:

In relation Emplovee {Emp#, S-Name, F-Name, Address, ...}, the followmng FD holds:
Emp# = S-Name, F-Name, Address

From definition of primary key, all attributes of a relation are functionally dependent on
the primary key. This is precisely what is required; in fact, an attribute (or group of attributes)
qualifies as a candidate key iff all other attributes of the entity are dependent on it.

We need to further refine our concept of FD by introducing another term — full
functional dependence: Attribute B is said to be fully functionally dependent on attribute
A if it is functionally dependent on A and not functionally dependent on any proper
subset of A.

As a spinoff from the definition of functional dependence, please note the following:

1. FD constraints have similarities with referential constraints,
except that here, reference is internal to the relation.

2. FDs help us to determine primary keys.

3. Each FD defines a determinant in a relation: the attribute(s)
on the right are dependent on the attribute(s) on the left; the
attribute(s) on the left constitute(s) a determinant.

4.4.2 Non-loss Decomposition

Suppose we have a relation RO as follows: RO{Suppl#, SuplName, Item#, ItemName,
Quantity, SuplStatus, Location}

Functional dependencies of R0 are illustrated in Figure 4-2; they may also be listed
as follows:

¢ [Suppl#, Item#]| > {Quantity, SuplName, SuplStatus, Location,
[temName}

e Suppl# > {SuplName, SuplStatus, Location}

. [tem# = [temName

Quantity . | | supiName
Suppl # »| SuplStatus
.| Location
ltem # -
o llemName

Figure 4-2. FD Diagram for Relation RO

Storing RO this way causes duplication. The reason is that RO is not sufficiently
normalized. As an alternate, we could have the following:

R1{Supl#, SuplNam, Location, SuplStatus}
R2{Item#, [temName}
R3{Supl#, Item#, Quantity}

R1, R2, and R3 constitute (an example of) a non-loss decomposition (NLD) of RO,

Here is a formal definition of an NLD:

If R 1s a relation and P1, P2, Pn are projections on R such that
P1JOIN P2 JOIN JOIN Pn=E,
then P1. P2, ... Pn constitutes a non-loss decomposition of R.

Notice that we have glided into two new terms, projection and join. These will be
formerly treated later in the course. Suffice it now to say that a projection on a relation
is an extraction (into a new relation) of some attributes of the relation; a join requires
at least two relations and may be construed as the opposite of a projection: If you can
project R into P1 and P2, then you may be able to join P1 and P2 to yield R.

Given this definition, we need to address the following questions:

1. How do we find non-loss decompositions?

2. When should we replace a relation by a non-loss
decomposition?

3. What are the advantages?

Heath's theorem (of [Heath, 1971]) addresses questions (1) and (2). The answer to
the third question is stated in section 4.3 above. Heath's theorem is stated below:

If we have arelation R{A. B, C, ...} andif A=>B and B> C, then projections
P1{A.B} and P2{B. C} constitute a non-loss decomposition of R.

Example 2: Proof of Heath's Theorem:

We wish toshow that RO {A, B, C} =P1 {A B} JOIN P2 {B.C}.

LetP1 {A B} and P2 {B, C} be projections of RO {A B, C}
Assume further that A B.C are single attributes.

Suppose that (2, b, ¢) is a tuple n RO,
Then (a. b)1s m P and (b, ¢) 15 m P2,
So(a,b,¢)isin P1JOINP2 ... (1)

Suppose that (a, b.¢) is n P1 JOIN P2,

Then (a, b, c1)1s n RO for some value ¢l

and (al, b, ¢) 151 RO for some value al.

But B = C therefore b = ¢ so that ¢1 must be ¢.
Therefore (a, b, ¢)1sm RO (2)

We have shown any tuple (a.,b.c) that1s in RO 15 also in P1 JOIN P2, and that any tuple (a,b.c) that 15 in P1
JOIN P2 15 also in RO, Therefore RO = P1 JOIN P2,

Corollary of Heath’s Theorem

An important corollary from Heath'’s theorem is as follows:

If P1, P2, ... Pn is a non-loss decamposition of R and relations P1, P2, ... Pn all share a candidate key,

then there is no reduction in data duplication.

Example 3: The following example illustrates the importance of the
above-mentioned corollary:

Suppose that a relation Student {SID, SName, Grade, Dept} 1s decomposed into S1{SID, SName} and
S2{SID, Grade, Dept}.

Assume further that SID 15 the pnmary key (or at least a candidate key) of Student. Note that SID also occurs in

S1 and S2. It should be obvious that there 15 no point 1n proceedmg with thus decomposition as 1t simply
compounds the duplication problem (SID would now be stored in two relations rather than one, 1 no avail)

Also, decomposition of Student into S3 {SID, SName} and S4{Grade, Dept} makes no sense.

Conclusion

Based on Heath's theorem and its corollary, we can assert with confidence, the following
advice:

* Decompose only when there is a non-loss decomposition such
that the resulting relations do not share a candidate key.

* Do not decompose if each resulting relation does not have a
primary key.

4.5 The First Normal Form

A relation R iz in the first normal form (1MF) iff it is a flat file i.e. it has no repeating groups, no
duplicate records, no null values in the primary key.

Put another way. a relation is in 1NF iff all its underlying simple domains (hence attributes) are
atomic. i.e. for every tuple in the relation. each attribute can have only one type of value.

By definition, all relations are in 1NE This is by no means coincidental, but by
design: we defined a relation to consist of atomic attributes, and subject to the entity
integrity constraint and the referential integrity constraint. However, as you will soon see,
having relations in 1NF only is often not good enough.

Example 4:

Many accounting software systems on the market will have a file defined as follows:
EndOfMonth{Acct?, Dept, Ball, Bal2, .. Ball3}

Note:

1. Ball ... Ball3 are defined on the same domam and thersfore constitute a vast amount of space wasting.

The only time that Ball ... Ball3 are all non-null 1s after Bal13 1s known (calculated).

At the end of each accounting period, thas file must be cleared and re-initialized for the next accounting
period.

v o

Exercise: How can these problems be solved?

Problems with Relations in 1INF Only

Relation RO of the previous section is in 1NF only. However it is undesirable to store it as
is due to a number of problems. In the interest of clarity, the relation is restated here:
RO{Supl#, SuplName, Iltem#, ItemName, Quantity, SuplStatus, Location}

Functional dependencies of R0 as illustrated in Figure 4-2 are as follows:

e FDI: [Supplz, ltem#] - {Quantity, SuplName, SuplStatus,
Location, ltemName}

e FD2: Suppl# =+ {SuplName, SuplStatus, Location}
« FD3: Item# - ItemName
The following data anomalies exist with R0 (and most relations in 1NF only):

¢ Replication of data: Every time we record a supplier - item pair,
we also have to record supplier name and item name.

¢ Insertion anomaly: We cannot insert a new item until it is
supplied; neither can we insert a new supplier until that supplier
supplies some item.

¢ Deletion anomaly: We cannot delete an item or a supplier
without destroying an entire shipment, as well as information
about a supplier’s location.

¢ Update anomaly: If we desire to update a supplier’s location or
item name, we have to update several records, in fact, an entire
shipment, due to the duplication problem.

Insertion, deletion update anomalies constitute modification anomalies, caused by
duplication of data due to improper database design.

4.6 The Second Normal Form

A relation is in the second nomal form (2NF) iff it is in 1NF and every non-key attribute is fully
functionally dependent on the primary key:.

By non-key attribute, we mean that the attribute is not part of the primary key.
Relation RO (of the previous section), though in 1NF is not in 2NF, due to FD2 and
FD3. Using Heath's theorem, we may decompose relation R0 as follows (note that the
abbreviation PK is used to denote the primary key):

R1{Supl#, Sname, Location, SuplStatus} PK[Suppl#|
R2{Item#, Itemname} PK[Item#]
R3{Supl#, [tem#, Qty} PK[Supl#, [tem#]

We then check to ensure that the resulting relations are in 2NF (and they are).

So based on the definition of 2NF, and on the authority of Heath's theorem, we would
replace RO with R1, R2, and R3. Please note the consequences of our treatment of R0 so far:

1.
2.
3.

The problems with relations in 1NF only have been addressed.
By decomposing, we have introduced foreign keys in relation R3.

JOINing is the opposite of PROJecting. We can rebuild relation
RO by simply JOINing R3 with R1 and R3 with R2, on the
respective foreign keys.

From the definition of 2NF, two observations should be
obvious: Firstly, if you have a relation with a single attribute
as the primary key, it is automatically in 2NE Secondly, if you
have a relation with n attributes and n-1 of them form the
primary key, the relation is also in 2NE

Problems with Relations in 2NF Only

In this example, relations R2 and R3 are in 2NF (in fact they are in 3NF), but we still
have potential problems with R1: What if we have a situation where there may be several
suppliers from a given location? Or what if we want to keep track of locations of interest?
In either case, we would have modification anomalies as described below:

¢ Insertion anomaly: We cannot record information about a
location until we have at least one supplier from that location.

e Deletion anomaly: We cannot delete a particular location without
also deleting supplier(s) from that location.

e Update anomaly: If we wish to update information on a location,
we have to update all supplier records from that location.

These problems can be addressed if we take the necessary steps to bring R1 into the
third normal form (3NF). But first, we must define what 3NF is.

4.7 The Third Normal Form

A relation is in the third normal form (3NF) iff it is in 2NF and no non-key attribute is fully
functionally dependent on other non-key attribute(s).

Put another way. a relation is in 3NF iff non-key attributes are mutually independent and fully
functionally dependent on the primary key. (Two or more attributes are mutually independent if none
of them 1s functionally dependent on any combination of the other.)

Put another way. a relation is in 3NF iff it is in 2NF and every non-key attribute is non-transitively
dependent on the primary key. (Non-transitivity implies mutual independence.)

Transitive dependence refers to dependence among non-key attributes. In particular,
if A= B and B - C, then C is transitively dependent on A (i.e. A> C transitively).

In the previous section, relation R1 is problematic because it is not in 3NE Ifit is
desirable to store additional information about the locations as indicated in the previous
section, then we must be smart enough to discern that location is to be treated as an
entity with attributes such as location code, location name (and perhaps others). Using
Heath's theorem, we may therefore decompose R1 as follows:

R4{Supl#, Sname, LocationCode} PK[Supl#]

R5{LocationCode, LocationName} PK[LocationCode]

We now check to ensure that the relations are in 3NF (and they are). Again, please
take careful notice of the consequences of our actions to this point:

1. The problems with relations in 2NF only have been addressed.

2. Again, by decomposing, we have introduced a foreign key in
relation R4.

3. We can rebuild relation R1 by simply JOINing R4 with R5 on
the foreign key.

4. From the definition of 3NF, it should be obvious that if you
have a relation with one candidate key and n mutually
independent non-key attributes, or only one non-key
attribute, it is in 3NFE

Problems with Relations in 3NF Only

Relations R2, R3, R4, and R5 above are all in 3NE However, it has been found that
3NF-only relations suffer from certain inadequacies. It is well known that 3NF does not
deal satisfactorily with cases where the following circumstances hold:

e There are multiple composite candidate keys in a relation.

e The candidate keys overlap (i.e. have at least one attribute in
common).

For these situations, the Boyce-Codd normal form (BCNF) provides the perfect
solution. As you shall soon see, the BCNF is really a refinement of 3NE In fact, where the
above-mentioned conditions do not hold, BCNF reduces to 3NE

4.8 The Boyce-Codd Normal Form

Simply, Boyce-Codd normal form (BCNF) requirement states:

A relation 1s in BCNF iff every deferminant in the relation is a candidate key.

A determinant is an attribute (or group of attributes) on which some other attribute(s)
is (are) fully functionally dependent. Examination of R2, R3, R4, and R5 above will quickly
reveal that they are in BCNF (hence 3NF). We therefore need to find a different example
that illustrates the importance of BCNE

Consider the situation where it is desirous to keep track of animals in various zoos,
and the assigned keepers for these animals. Let us tentatively construct the relation R6 as
shown below:

R6{Zoo, Animal, Keeper}

Assume further that that a keeper works at one and only one zoo. We can therefore
identify the following FDs:

¢ [Zoo, Animal] > Keeper

* Keeper- Zoo

Given the above, we conclude that [Zoo, Animal] is the primary key. Observe
that R6 is in 3NF but not in BCNF, since Keeper is not a candidate key but is clearly a
determinant. Using Heath's theorem, we may decompose R6 as follows:

R7{Animal, Keeper} PK[Animal]
R&{Keeper, Zoo} PK[Keeper]

As on previous occasions, let us examine the consequences of
our action:

1. By achieving BCNF, we benefit from further reduction in data
duplication, and modification anomalies.

2. A further advantage is that we can now store dangling records.
In our example, a keeper can be assigned to a zoo even before
he/she is assigned an animal.

3. One possible drawback with BCNF is that more relations have
to be accessed (joined) in order to obtain useful information.
Again referring to the example, R7 must be joined with R8 in
order to derive Zoo-Animal pairs.

Observe: The principle of BCNF is very simple but profound. By being guided by it,
you can actually bypass obtaining 1NF, 2NF and 3NF relations, and move directly into
a set of BCNF relations. Adopting this approach will significantly simplify the analysis
process. Moreover, in most practical situations, you will not be required to normalize
beyond BCNE. This approach will be further clarified in the next chapter.

4.9 The Fourth Normal Form

The fourth normal form (4NF) relates to the situation where mutually independent, but
related attributes form a relation and the inefficient arrangement causes duplication and
hence modification anomalies. Consider the database file, CTT-Schedule, representing
course-teacher-text combinations in an educational institution. Assume the following:

d.

b.

A course can be taught by several teachers.
A course can require any number of texts.

Teachers and texts are independent of each other i.e. the same
texts are used irrespective of who teaches the course.

A teacher can teach several courses.

Figure 4-3 provides some sample data for the purpose of illustration.

Course Teacher Text

Calculus | Prof A Text 1
Calculus | Prof B Text1
Calculus I Prof B Text 2
Caleulus I Prof B Text 3
Calculus I Prof C Text 2
Calculus |i Prof C Text 3

Figure 4-3. CTT-Schedule File

Note that the theory so far, does not provide a method of treating such a situation,
except flattening the structure (by making each attribute part of the primary key) as
shown below:

R9{Course, Teacher, Text} PK[Course, Teacher, Text|

Since R9 is keyed on all its attributes, it is in BCNE Yet, two potential problems are
data redundancy and modification anomalies (the former leading to the latter). In our
example, in order to record that Calculus II is taught by both Professor B and Professor C,
four records are required. In fact, if a course is taught by p professors and requires n texts,
the number of records required to represent this situation is p*n. This is extraordinary,
and could prove to be very demanding on storage space.

Relation R9, though in BCNE is not in 4NF, because it has a peculiar dependency,
called a multi-valued dependency (MVD). In order to state the 4NF, we must first
define MVD.

4.9.1 Multi-valued Dependency
A multi-valued dependency (MVD) is defined as follows:

Given a relation R(A, B, C), the MVD A -» B (read “A multi-determines B"") holds iff every B-value
matching a given (A-value, C-value) pair in R depends only on the A-value and is independent of the C-
value.

Further. given R(A B C). A -» B holds iff A -» C also holds. MVDs always go together in pairs like
this. We may therefore write A -» B/C.

Please note the following points arising from the definition of an MVD:
1. For MVD, at least three attributes must exist.

2. FDsare MVDs but MVDs are not necessarily FDs.

3. A-» Breads “A multi-determines B” or “B is multi-dependent
onA’

Let us get back to R9: Course -» Text/Teacher. Note that Course is the pivot of
the MVD. Course -» Teacher since Teacher depends on Course, independent of Text.
Course -» Text since Text depends on Course, independent of Teacher.

4.9.2 Fagin’s Theorem

Fagin's theorem (named after Ronald Fagin who proposed it) may be stated as follows:

Relation R{A, B, C} can be non-loss decomposed into projections R1{A.B} and R2{A. C} iff the
MVDs A -» B/C both hold.

Note that like Heath's theorem, which prescribes how to treat FDs, Fagin's theorem
states exactly how to treat MVDs. With this background, we can proceed to defining the 4NF:

A relation is in 4NF iff whenever there exists an MVD, say A -» B. then all attributes of R are also
functionally dependent on A.

Put another way. R{A, B. C...} is in 4NF iff every MVD satisfied by R is implied by the candidate key
of B

Put another way. R{A. B. C...} is in 4NF iff the only dependencies are of the form
[candidate key] = [other non-key attribute(s)].

Put another way. R{A. B. C ...}is in 4NF iff it is in BCNF and there are no MVD's (that are not FDs).

In the current example, R9 is not in 4NF. This is so because although it is in BCNF,
an MVD exists. Using Fagin's theorem, we may decompose it as follows:

R10{Course, Text} PK[Course, Text|
R11{Course, Teacher} PK|Course, Teacher]

Note: Fagin's theorem prescribes a method of decomposing a relation containing
an MVD that is slightlydifferent from the decomposition of an FD as prescribed by Heath's
theorem: Figure 4-4 clarifies this.

If the relation contains MVD A ->> B/C then decompose as follows:
B = A » C

Decompose < » Decompose

Figure 4-4. Treating MVDs

4.10 The Fifth Normal Form

So far we have been treating relations that are decomposable into two other relations.
In fact, there are relations which cannot be so decomposed, but can be decomposed
into n other relations where n > 2. They are said to be n-decomposable relations (n > 2).
The fifth normal form (5NF) is also commonly referred to as the projection-join normal
form (PINF) because it relates to these (n > 2) projections (of a relation not in 5NF) into
decompositions that can be rejoined to yield the original relation.

Recall the SupplierSchedule relationship (linking suppliers, inventory items and
projects) mentioned in section 3.5; it is represented here as outlined below:

SupplierSchedule{Suppl#, [tem#, Proj#} PK[Suppl#,
[tem#, Proj#]

The relation represents a M:M relationship involving Suppliers, Items, and Projects.
Observe the following features about the relation:

1. SupplierSchedule is keyed on all attributes and therefore by
definition, is in BCNE By inspection, it is also in 4NE

2. Itis not possible to decompose this relation into two other
relations.

3. Ifthere are S suppliers, N items and] projects, then
theoretically, there may be up to S*N*J records. Not all of these
mav he valid.

4. Ifwe consider S suppliers, each supplying N items to]
projects, then it does not take much imagination to see that a
fair amount of duplication will take place, despite the fact that
the relation is in 4NF.

Let us examine a possible decomposition of SupplierSchedule as shown in Figure 4-5.
Ifwe employ the first two decompositions only, this will not result in a situation that
will guarantee us the original SupplierSchedule. In fact, if we were to join these two
decompositions (SI and IP), we would obtain a false representation of the original
relation. The third projection (PS) is absolutely necessary, if we are to have any guarantee
of obtaining the original relation after joining the projections.

SupplierSchedule

Spurious tuple

Suppl# Item# Proj
51 I 1
21 I F2
51 12 F1
52 I P1
Projection Sl Projection IP Projection PS
Suppl# Iternd Itemi Proj# Proj# Suppl#
51 I 11 P1 P1 B
1 12 11 P2 P1 52
52 il 12 F1 P2 Bl
JOIM over Hermd
Suppl# | lem# Proj# | JOIN aver Proji and Supld
51 I P1 "
31 I Pz
21 12 P1
82 I P1 L
52 I Pz Original Supplier-Scheduls

Figure 4-5. Hlustrating Possible Decompositions of Supplier-Schedule

MNote: The first join produces SupplierSchedule plus additional spurious tuples. The
effect of the second join is to eliminate the spurious tuples. To put it into perspective,
SupplierSchedule is subject to a (time independent)
3-decomposable (3D) constraint, namely:

If {5, 1pis in 51

and {i, pdisin IF

and ipspisin PS

then {5, 1, p) s in SupplierSchedule

This is an example of a join dependency (ID) constraint.

4.10.1 Definition of Join Dependency

A join dependency (JD) constraint may be defined as follows:

Relation R. satisfies the JD P1. P2. ... Pniff R =FP1 JOIN P2 JOIN ... JOIN Pn
where the attributes of P1 ... Pn are subsets of the attributes of R.

Relations that are in 4NF, but not in 5NF (such as SupplierSchedule) suffer from
duplication, which in turn leads to modification anomalies. These problems are directly
related to the presence of the JD constraint(s) in such relations. Fagin's theorem for
5NF relations provides the solution.

4.10.2 Fagin’s Theorem

Fagin's theorem for the fifth normal form (5NF) states:

A relation R is in SNF (also called PINF) iff every JD in R is a consequence of the candidate keys of R,

In layman's terms 1if a relation R 15 in 4NF and 1t 15 n-decomposable into P1, P2 . Pn, such that
R =P1JOIN P2 ... JOIN Pn wheren > 2,
such relation is not in SNF. It may therefore be decomposed to achieve SNF relations.

Put another way, a relation R is in SNF iff it 15 in 4NF and it 15 not decompesable, except the decomposations are
based on a candidate key of B, and the mimmum sumber of projections 1s 3.

Now examine relation SupplierSchedule. SupplierSchedule is not in 5NF because
it has a JD (i.e. the]D constraint) that is not a consequence of its candidate key. In other
words, SupplierSchedule can be decomposed, but this is not implied by its candidate key
[Supl#, Item#, Proj#|.

Note: For most practical purposes, you only have to worry about 5NF if you are try-
ing to implement an M:M relationship involving more than two relations. Once in 5NE,
further decompositions would share candidate keys and are therefore to no avail (recall
corollary of Heath's theorem). Notwithstanding this, other normal forms have been
proposed, as will be discussed in the upcoming section.

4.11 Other Normal Forms

The field of Database Systems is potentially a contemptuous one. Indeed, there are
accounts of former friends or colleagues becoming foes over database quibbles

(in Figure 4-7 of section 4.12, the current author relates a personal experience he had as
a young software engineer on a project of national importance). Various individuals have
proposed several database theorems and methodologies, but they have not all gained
universal acceptance as have the normal forms of the previous sections. Two additional
normal forms that have been, and will no doubt continue to be the subject of debate are
the domain-key normal form (DKNF) and the sixth normal form (6NF). Without picking
sides of the debate on these two normal forms, this section will summarize each.

4.11.1 The Domain-Key Normal Form

The domain-key normal form (DKNF) was proposed by Ronald Fagin in 1981. Unlike the
other normal forms which all relate to FDs, MVDs and]Ds, this normal form is defined in
terms of domains and keys (hence its name). In his paper, Fagin showed that a relation
DKNF has no modification anomalies, and that a relation without modification
anomalies must be in DKNFE. He therefore argued that a relation in DKNF needed no
further normalization (at least, not for the purpose of reducing modification anomalies).
The definition of DKNF is as follows:

A relation is in DKNF if every constraint on the relation is a logical consequence of the definition of
its keys and domains.

This definition contains three important terms that need clarification:

e A constraint is used to mean any rule relating to static values of
attributes. Constraints therefore include integrity rules, editing
rules, foreign keys, intra-relation references, FDs and MVDs, but
exclude time-dependent constraints, cardinality constraints and
constraints relating to changes in data values.

¢ Akeyisaunique identifier of a row (as defined in Chapter 3).

e Adomain is a pool of legal attribute values (as defined in Chapter 3).

The implication of the DKINF is clear: If we have a relation that contains constraint(s)
that is (are) not a logical consequence of its (candidate) key and domains, then that

relation is not in DKNF, and should therefore be further normalized. The DKNF as
proposed by Fagin, therefore represents an ideal situation to strive for.
Unfortunately, a number of problems arise from consideration of DKNF:

* Any constraint that restricts the cardinality of a relation
(i.e. the number of tuples in the relation) will render it in violation
of DKINE. (It was perhaps for this reason that Fagin excluded
from his definition of constraints, time-dependent constraints
or constraints relating to data values.) However, there are many
relations for which such constraints are required.

e There is no known algorithm for converting a relation to DKNE
The conversion is intuitive and for this reason described as artistic
rather than scientific.

e Not all relations can be reduced to DKNF (relations with
cardinality constraints fall in this category).

e Itisnot precisely clear as to when a relation can be reduced to DKNE

For these reasons, the DKNF has been compared by Date (see [Date, 2006]) toa
“straw man... of some considerable theoretical interest but not yet of much practical ditto.”

4.11.2 The Sixth Normal Form

A sixth normal form (6NF) has been proposed by C. J. Date in [Date, 2003], after several
years of exploitation, expounding, and research in the field of database systems. It relates
to so-called temporal databases. Date wrote a whole book on the subject; a summary
of the essence is presented in this sub-section. Date defines a temporal database as a
database that contains historical data as well as, or instead of current data. Temporal
databases are often read-only databases, or update-once databases, but they could be
used otherwise. In this sense, a temporal database may be considered as a precursor to a
data warehouse (discussed in Chapter 24).

For the purpose of illustration, assume that we are in a college or university setting
and desire to store the relation Course as defined below:

Course {CourseNo, CourseName, CourseCred}

Suppose further that we desire to show different courses at the time they existed
in the database. To make our analysis more realistic, let us also make the following
additional assumptions:

e The primary key is CourseNo; for any given course, the attribute
CourseNo cannot be changed.

e For any given course, the attribute CourseName may be changed
any point in time.

* For any given course, the attribute CourseCred may be changed
any point in time.

We may be tempted to introduce a timestamp on each tuple, and therefore modify
the definition of Course as follows:

Course {CourseNo, CourseName, CourseCred, EffectiveDate}

Figure 4-6 provides some sample data for the Course relation. By introducing
the attribute EffectiveDate, we have actually introduced a new set of concerns as
summarized below:

1.

If we assume that the FD CourseNo = {CourseName,
CourseCred, EffectiveDate} is (still) in vogue, then Course
is in 3NE However, in this case, if the CourseName or
CourseCred of a given Course tuple changes at a given
effective date, there is no way of showing what it was before,
unless we create a new course and assign a new CourseNo,
In either case, this clearly, is undesirable.

Suppose we assume the FDs CourseNo = CourseMName and
[CourseMo, EffectiveDate] = CourseCred Then, the relation is
not in 2NE and therefore needs to be decomposed into two
decompositions:

CourseDef {CourseNo, CourseName} and
CourseTimeStamp |CourseNo, EffectiveDate, CourseCred}

Both of these relations would now be in 5NE However, if we
now desire to change the CourseName of a course for a given
effective date, we cannot represent this in the current schema.

We could introduce a surrogate (say CourseRef) into relation
Course, and key on the surrogate, while ignoring the FDs
stated in (1) and (2) above. In this case, Course would be in
violation of 3NFE, and if we attempt to decompose, we would
revert to the situation in case (2) above.

CourseNo CoursaName CoursaCred EffectiveDate
C5120 Infroducion fo Computer Science 3 1830
C3120 Infroduction fo Computer Science 4 2005
C3140 Computer Programming | 3 1940
C3140 Compuler Programming | 4 2008
C5145 Computer Programming || 3 1930
05145 Computer Pregramming | 4 2005
C3130 Fascal Programming 3 1940

Figure 4-6. Sample Data for the Course Relation

The reason for these problems can be explained as follows: The relation Course as
described, defines the following predicate:

#* Each course is to be accounted for (we say Course is under
contract).

Each course has a CourseName which is under contract.
* Each course has a CourseCred which is under contract.

The predicate involves three distinct propositions. We are attempting to use the
timestamp attribute (EffectiveDate) to represent more than one proposition about the
attribute values. This, according to Date, is undesirable and violates the sixth normal form.

We now state Date's theorem for the sixth normal form (6NF):

A relation R is in 6NF iff if satisfies no non-trivial JDs at all. (A& TD is trivial iff at least one of its
projections is over all of the attributes of the relation.)

Put another way, a relation R is in 6NF iff the only TDs that it satisfies are trivial ones.

Note: 6NF as defined, essentially refines 5NFE. It is therefore obvious from the

definition that a relation in 6NF is necessarily in 5NF also.

Let us now revisit the Course relation: With the introduction of the timestamp
attribute [EffectiveDate), and given the requirements of the relation, there is a non-trivial
1D that leads to the following projections:

CourselnTime {CourseNo, EffectiveDate} PK [CourseNo,
EffectiveDate]

CourseNameInTime |CourseNo, CourseMName, EffectiveDate}
PK [CourseNo, EffectiveDate]

CourseCredInTime {CourseMNo, CourseCred, EffectiveDate}
PK [CourseNo, EffectiveDate]

Observe that the projection CourseIlnTlme is strictly speaking, redundant, since it
can be obtained by a projection from either CourseNameInTime or CourseCredInTime.
However, in the interest of clarity and completeness, it has been included.

This work by C. J. Date represents a significant contribution to the field of database
systems, and will no doubt be a topical point of discussion in the future.

4.12 Summary and Concluding Remarks

This concludes one of the most important topics in your database systems course.
Take some time to go over the concepts. Figure 4-7 should help you to remember the

salient points.

| Unancmalizsd reletions |

¥
Flaken — no rapadling grougs, no s, ne
dupicaie uples

| 1NF Relstions |

Heath's Theomm: Decompose so thal avery nonsiey aftrbde s folfy functionally
Sapardart on the primany lay

4 Codd

2NF Relations | € Coad
b

Hasth's Theorsm Dacompose so frat no full fancional
dagsindencs wosts among non-key strbules

INF Relations I 4 Codd

)

Heath’s Theonem; Dhsompond 52 el evary Sataminan b a
candida kay

+

BCHF Relafians | BoycaiCond

Fagin's Thecram: Dscimpoas o thal no KT sl (exospl
they ba FDs aksc)

¥

| 4NF Relssians | € Fagin

Fagin's Theorem Dusompuas & ai=iran J0s

+

| SNF Relations | € Fagin

+

Daalir's TRecnem: Docomposa & abmine all norebaial J0s

b

[ENF Relations | « Dot

Figure 4-7. Summary of Normalization

Traditionally, it has been widely accepted that for most databases, attainment of 3NF
is acceptable. This course recommends a minimum attainment of BCNF. Recall that as
stated earlier (in section 4.8), BCNF is really a refinement of 3NF, and the normalization
process can bypass 2NF and 3NF, and go straight to BCNE In rare circumstances, it may
be required to proceed to 5NF or 6NF, which is the ultimate.

Normalization is a technique that must be mastered by database designers. It improves
with practice and experience, and ultimately becomes almost intuitive. As your mastery
of normalization improves, you will find that there is a corresponding improvement in
your ability to design and/or propose database systems for various software systems.
However, be aware that the converse is also true: failure to master fundamental principles
of database design will significantly impair one’s ability to design quality software systems.
Notwithstanding this, be careful not to be antagonistic about your views, as informed as they
may be. In this regard, Figure 4-8 summarizes a practical experience of the author.

Between 1987 and 1990, | was part of the software engineering team that investigated, designed, developed and

implemented two huge strategic information systems (though | did not know the correct term at the time) for the Central

Bank of Jamaica — an Economic Management System (EMS} and a Bank Inspection System (BIS). Bath projects were

immensely successful. | have warm memories of them, but | relate two not-so-warm experiences as a word of caution fo

young database systems enthusiasts:

= | soon found a niche for myself and distinguished myself as a database design expert. However, | often ran into
confrontations with my then supervisor (who subsequently became my consulting partner en a number of other
major projects) for finding faults with the database design proposed by the project team. Looking back, | was brash
and tactless, and often created enemies by my rash comments.

» On one occasion, my brash, tactless approach almost shattered the relationship with my best friend, Ashley. We
along with three others were hired by the central bank, and placed on the project, after a regional search. That was
special. Ashley and | had distinguished ourselves as outstanding software engineers and database experis. For that
reason, we were asked to design a sub-system together. We soon had conflicts over the design appreach to be
taken. Ashley had one idea; | had another idea, and the two of us would not agree, Realizing that our friendship was
heading south over the conflict, | backed off and allowed Ashley’s proposal to be accepted, but later tweaked its
implementation when he was nol paying attention. Looking back, we were both being silly: The most prudent
proposal should have been a merge of the two ideas,

Figure 4-8. Database Quibbles almost got me in Trouble

