HaB4a/sibHa AUCUMUMAIHA

5A3U OAHUX

R J1eKTOp - K.T.H., AOLEHT
baknaH Irop Bcesonoaosuny

Site: baklaniv.at.ua

E-malil: laa@ukr.net

2016-2017

mailto:iaa@ukr.net

Jlekmiss Nob.,

Mopae/iloBaHHA TA NPOCKTYBAHHA
0a3u JaHuX

Database Model and Database Design

The E-R Model Revisited

Database Design With the E-R Model

The Extended Relational Model

Database Design With the Extended Relational Model
The UML Model

Database Design With the UML Model

Innovation: The Object/Entity Specification Grid
Database Design Using Normalization Theory
Database Model and Design Tools

Summary and Concluding Remarks

5.1 Database Model and Database Design

Database modeling and database design are closely related; in fact, the former leads to the
latter. However, it is incorrect to assume that the path from database modeling to database
design is an irreversible one. To the contrary, changes in your database model will affect
your database design and vice versa. This course therefore purports that you can work on
your database model and your database design in parallel, and with experience, you can
merge both into one phase. For the purpose of discussion, let us look at each phase.

5.1.1 Database Model

The database model is the blueprint for the database design. Database modeling is
therefore the preparation of that blueprint. In database modeling, we construct a
representation of the database that will be useful towards the design and construction of
the database. Various approaches to database modeling have been proposed by different
authors; the prominent ones are:

¢ The Entity-Relationship (E-R) Model
¢ The Object-Relationship (O-R) Model
¢ The Extended Relational Model

The E-R and O-R models were introduced in chapter 3 (sections 3.5.1 and 3.5.2).
Chapter 3 also introduced the Relation-Attributes List (RAL) and the Relationship List
(RL section 3.6) as an alternative to the E-R model in situations where E-R modeling is
impractical. We will revisit the E-R model later in this chapter, and then introduce the
extended relational model.

5.1.2 Database Design

The database design is the (final) specification that will be used to construct the actual
database. Database designing is therefore the preparation of this specification. In
preparing the database specification, the database model is used as input. As such, the
guidelines given in chapter 3 (section 3.5.4) on implementing relationships are applicable.
Five approaches to database design that will be discussed later in this chapter are:

.

.

.

Database Design via the E-R Model

Database Design via the Extended Relational Model
Database Design via the UML Model

Database Design via the Entity/Object Specification Grid

Database Design via Normalization Theory

5.2 The E-R Model Revisited

Recall that in chapter 3, the similarity and differences between an entity and a relation
were noted. If we assume the similarity, then the E-R model can be construed as merely a
specific interpretation of the relational model.

In order to unify the informal E-R model with the formal relational model, Codd
introduced a number of conventions specific to the E-R model. These are summarized
in Figure 5-1 and illustrated in Figure 5-2. Note that the model displayed in the figure
represents only a section of the (partial) database model introduced in chapter 3
(review Figure 3-4b). Figure 5-2a employs the Chen notation, while Figure 5-2b employs
the Crow's Foot notation. In both cases, the attributes of entities have been omitted,
except for primary key attributes (as mentioned in chapter 3 and emphasized later in this
chapter, there are more creative ways to represent attributes). Figure 5-3 illustrates the
representation of super-type and subtype relationships.

® A weak entily is one that cannot exist by itself. For instance, if employees have dependents then Dependents is a
weak entity and Employee is a regular entity. On the E-R diagram, weak enfities are represented by double lines.

® Relationships may be represented by either Chen’s notation, or the Crow's Foot notation.

= [fChen's notation is used fo represent relationships, then the following apply:
+ The double diamond indicates a relationship between weak and regular entity.
The name of the relationship is written inside the diamaond.
+ A double relationship line represents fotal participation; a single relationship line represents partial participation.

For instance, if all dependents must have a reference employee, participation is total on the part of dependents;
however, all employees need not have dependents, so that participation is partial on the part of employees.

= Enlity Types are used to distinguish entities. An entity can be a subtype of another entity that is a super-fype. For
instance, in an organization, the entity Programmer would be a subtype of the entity Employee, the super-type. All
properties of a super-type apply to its subtype; the converse does not hold. Figure 5.3 illustrates how subtypes and
super-types are represented.

» |mplementation of relationships can be realized as discussed in chapter 3. Furthermore, the fundamental integrity
rules (section 4.1) must also be upheld.

Figure 5-1. E-R Model Conventions

— | Suppler
M |
Supoliem
M K
Projec] Irverionyliam
il L W
(e)
<D
L __m:_l A
- '_'\
Dispnid
- o /.

Diemariment
1
e i ¥
Emzit

S

Employea
[
Dapandani
Woke: Oinly primary key atiribules are shown

Figure 5-2a. Partial E-R Diagram for Mamufacturing Firm (Chen's Notation)

Deparmant l":‘ Suppi :-— Supplier
N |
Suppiched
DapEme ——
{ Proje
(__.:'wa -._-_:I | Frojior —_ —
T M + |
_— 1
Employes Project |
- Fro i
Erplep e
e, "-I- T
- e i)]
[(emt) S
~— | M
Depandani e,
I Capni '\ IrvspnioryHam
LI L
emSiuc
Note: Only afidbules hel conslule the primany keys ane shawn
Relationship Classification
DapEmp 1:M: total participation on the Employes side
Emglap 1M lolal parfoigalon on Degandent sice
Projfok MM
ProjMgr 1M
IemSinc MM
Suzphese M:M
SuppSched MM: can be eplaced as shown in chapler 4

Figure 3-2b. Alternate Partial E-R Diagram for Manuwfacturing Firm [Crow's Feet
Notabtion)

Employee

I

Programmer

|

Engineer

SystemProgrammer

ApplicationProgrammer

o0

Accountant

Figure 5-3. Example of Type Hierarchy

5.3 Database Design via the E-R Model

Database design with the E-R model simply involves following the rules established in
chapter 3 on implementing relationships (section 3.5.4). These rules tell you exactly
how to treat the various kinds of relationships; take some time to review them. We may
therefore construct a procedure for database design via the E-R model as follows:

Lo b

&

Identify all entities and their related attributes.

Classify the entities (weak versus strong).

|dentify all relationships among the entities.

Classify the relationships (mandatory versus oplional); decide on which oplional relationships wil be retained and
which ones will be eliminated.

Construct an ERD or the equivalent (review chapter 3).

Refine the model.

Using the guidelines for implementing relationships (section 3.5.4), construct a fina set of relaticns, clearly indicating
for each relation, its attributes, candidate key(s), and primary key. The RAL and RL of chapter 3 (section 3.6) may be
employed.

By consistently following this procedure, you will obtain a set of relations that will be nermalized to at least the Boyce-Codd
normal form (BCNF). You can then apply your normalization theory until you achieve he desired level of normalization.

Note: Theillustrations given in chapter 3 (figures 34b, 3.13 and 3.14) are applicable here.

Figure 5-4. Database Design Procedure Using the E-R Model

5.4 The Extended Relational Model

Even with the conventions above, the E-R model was found lacking in its treatment of
certain scenarios. Recognizing this, Codd and Date introduced an alternate extended
relational model (which for convenience will be abbreviated as the XR model), the
essence of which is described here (for more details, see [Date, 1990] and [Date, 2004]).

The XR model makes no distinction between entities and relations; an entity is a
special kind of relation. Structural and integrity aspects are more extensive and precisely
defined than those of the E-R model. The XR model introduces its own special operators
apart from those of the basic relational model. Additionally, entities (and relationships)
are represented as a set of E-relations and P-relations.

The model includes a formal catalog structure by which relationships can be made
known to the system, thus facilitating the enforcement of integrity constraints implied by
such relationships.

As you will see later in the course, it turns out that the XR model forms the basis of
how the system catalog is handled in most contemporary DBMS suites. We shall therefore
spend a few moments to look at the main features of the model.

5.4.1 Entity Classifications

Under the XR model, the following entity classifications hold:

L

L

L

Kernel entities
Characteristic entities
Designative entities
Associative entifies

Sub-type/super-type entities

Kernel Entities: Kernel entities are those entities that have independent existence.
They are what the database is really about. For example, in an inventory system, kernel
entities might be Purchase Order, Receipts of Goods (Invoice), Inventory Item,
Department and Issuance of Goods (to various departments). Referring to the example
used in the previous section, kernel entities would be Suppliers, Inventoryltems,
Projects, Employees, and Departments.

Characteristic Entities: Characteristic entities describe other entities. For instance
(referring to Figure 5-2b), Dependent is a characteristic of Employee. Characteristics are
existence-dependent on the entity they describe.

Designative Entities: An entity, regardless of its classification, can have a property
(attribute) whosefunction is to designate (reference) some other entity, thus implementing
a 1:M relationship. For instance (referring to Figure 5-2b), Employee is designative of
Department, and Project is designative of Employee (due to relationship ProjMgr). Put
another way, a designation is the implementation of an M:1 relationship. The designating
entity is the entity on the “many-side” of a 1:M relationship. Note that a characteristic entity
is necessarily designative since it designates the entity on which it is existence-dependent.
Note however, that a designative entity is not necessarily characteristic. Entities Project,
Emplovee, and Dependent amplify these points (see Figure 5-2).

Associative Entities: Associative entities represent M:M relationships among two or
more entities. For example, from Figure 5-2b, the relationships ProjWork, SuppSched,
Suppltems, and ItemStruct would be implemented as associative entities. In a college
database with kernel entities Program and Course (among others of course), and a M:M
relationship between them, the associative entity representing the relationship could
be ProgramStructure, which would include foreign keys referencing Program and
Course respectively. Note that the associative entity is the intersecting relation in the
implementation of a M:M relationship (review chapter 3, section 3.5.4).

Subtype/Super-type Entities: If we have two entities E1 and E2, such that a record
of E1 is always a record of E2, and a record of E2 is sometimes a record of E1, then E1 is
said to be a subtype of E2. The existence of a subtype implies the existence of a super-
type: To say that E1 is a subtype of E2, is equivalent to saying that E2 is the super-type of
El. For illustration, review Figure 5-3.

5.4.2 Surrogates

Recall that the concept of a surrogate was first introduced in chapter 3 (section 3.5.4).

In understanding the X-R model, the role of surrogates is very important; we therefore
revisit the concept here. Surrogates are system controlled primary keys, defined to avoid
identification of records (tuples) by user-controlled primary keys. They are also often
used to replace composite primary keys. Two consequences of surrogates arise (both of
which can be relaxed with a slight deviation from the XR model which does not enforce
surrogates, E-relations and P-relations as mandatory):

e Primary and foreign keys can be made to always be
non-composite.

+ Foreign keys always reference corresponding E-relations
(more on this shortly).

Surrogates provide two significant benefits:

¢ Insome traditional DBMS suites, composite primary keys are not
allowed; surrogates are therefore imperative.

e Even if allowed by the DBMS, composite primary keys are
sometimes cumbersome; surrogates are useful replacements in
these circumstances.

To demonstrate the usefulness of surrogates in simplifying database model and
ultimate design (with respect to avoiding cumbersome composite primary keys), let us
suppose that we want to track purchase orders and their related invoices. The related
entities that we would need to track are Supplier, Inventoryltem, PurchaseOrder and
Purchaselnvoice. These are not all included in Figure 5-2; however they are represented
in figure 3-4b of chapter 3 (please review). By following through on the E-R model, or
by applying normalization principles of chapter 4, we may construct a tentative set of
normalized relations as illustrated in Figure 5-5a. Notice how potentially cumbersome
the composite keys would be, particularly on relations PurchaseOrdDetail and
PurchaselnvDetail. However, by introducing surrogates as illustrated in Figure 5-5b, we
minimize the need to use complex composite keys.

Supplier {Suppl#, SuppName, Address, E-mail, CantactPerson, Telephone, ...}
PK [Supplier]

Inventoryltem {ltem#, ItemName, QuantityOnHand, LastPrice, AveragePrice, ...}
PK [Item#]

PurchaseOrdSummary {Order#, OrderDate, OrderSuppl#, OrderStatus, OrderEstimate, ...}
PK [Order#, OrderDate, OrderSuppl#] /* Assuming order numbers may be repeated after a cycle of several years */

PurchaseOrdDetail {PODOrder®, PODOrderDate, PODOrderSuppl, PODItemd#, OrderQuantity, ...}
PK [PODOrders, PODOrderDate, PODOrderSuppl#, PODItem#]

PurchaselnvSummary {Invoice®, InvOrder#, InvOrderDate, InvSupp#, InvDate, InvAmaount, InvStatus, InvDiscount,
InvTax, InvAmountDue, ...}
PK [invaice#, InvaiceDate, InvOrder#, InvOrderDate, InvSuppli]

PurchaselnvDetail {FIDInvoice#, PIDInvoiceDate, PIDInvOrders, PIDInvOrderDate, PIDInvSuppl#, PIDItem#,
PICltemQuantity, FIDltemUnitPrice}
PK [PIDlnvoice#, PIDInvoiceDate, PIDInvOrder#, PIDInvOrderDate, PIDInvSuppl#, PIDIterm#]

Note: Foreign keys are italicized,

Figure 5-5a. Model to Track Purchase Orders and Invoices (without Surrogates)

Supplier {Suppl#, Supp-Name, Address, E-mail, Contact-Person, Telephone, elc.)
PK [Supplier#]

Inventoryltem {ltem#, ltem-Name, Quanfity-On-Hand, Last-Price, Average-Price, efc.}
PK [ltem#]

PurchaseOrdSummary {OrderRef, Order#f, OrderDate, OrderSuppl#, OrderStatus, OrderEstimate, ...}
PK [OrderRef] /* OrderRef is a surrogate. Alternately, we may define Order# to be non-repeatable */

PurchaseOrdDetail {PODOrderRef, PODIiterw,, OrderQuantity)
PK [PODOrderRef, PODItem#] [* or introduce a surrogate, PODCode, and make it the PK ¥/

PurchaselnvSummary {PurchaseRef, Invoice#, InvOrderRef, InvDate, InvAmount, InvSiatus, InvDiscount, InvTax,
InvAmountDue, ...}
PK [PurchaseRef] ™ PurchaseRef is a surrogate */

PurchaselnvDetail {PIDPurchaseRef, PIDItem#, PIDtemQuantity, PIDItemPrice}
PK [PIDPurchaseRef, PIDItem#] /* or introduce a surrogate, PIDCode, and make it the PK ™/

Note: Foreign keys are italicized,

Figure 5-5b. Alternate Model to Track Purchase Orders and Invoices (with Surrogates)

5.4.3 E-Relations and P-Relations

The original XR model specification prescribes the use of E-relations and P-relations.
The database would contain one E-relation for each entity type — a unary relation
that lists surrogates for all tuples of that entity (type). To illustrate, let us revisit the
manufacturing firm’s partial database (Figure 5-2) of previous discussions: Suppose for
a moment that the Supplier relation contains two tuples, the Inventoryltem relation
contains three tuples, and the Department relation contains three tuples. A possible
internal representation of the E-relations for this scenario is illustrated in Figure 5-6a. An
“E" is inserted in front of the original relation name (for example E-Supplier) to denote
the fact that this is an E-relation being represented. The percent sign (%) next to the
attributes (for example Suppl%) are used to denote the fact that these attributes are really
surrogates.

In addition to the E-relations concerned with tuples, a special binary E-relation
would be required to link so-called E-relations to the original relations. We will call
this the host E-relation. It is illustrated in Figure 5-6b. This would allow users to relate
to the database using relation names that they are familiar with; translation would be
transparent to them.

Properties (attributes) for a given entity type are represented by a set of P-relations.
The P-relation stores all property characteristics and values of all tuples listed in the
corresponding E-relation. Properties can be grouped together in a single n-ary relation,
or each property can be represented by P-relation, or there can be a convenient number
of P-relations used; the choice depends on the designer. In the interest of simplicity,
let us assume the third approach; let us assume further, that there is a P-relation for
each E-relation. A convenient possible representation for the E-relations of Figure 5-6a
is illustrated in Figure 5-6¢. A “P” is inserted in front of the original relation name (for
example P-Supplier) to denote the fact that this is a P-relation being represented. Notice
also that each P-relation contains a foreign key that ensures that each tuple is referenced
back to its correspondent in the associated E-relation.

Carrying on with the assumption that there is a P-relation for each E-relation: In
addition to the basic P-relations, a special P-relation would be required to store the
characteristics of each property (to be) defined in the database. Let us call this the host
P-relation. It is represented in Figure 5-6d. By including this relation, we allow users
the flexibility of adding new properties to a relation, modifying existing properties in a
relation, or deleting pre-existent properties from a relation. These changes are referred to
as structural changes to a relation; they will be amplified later in the course (chapter 11).

E-Supplier: Suppl®

E-Inventoryltem: Item%

E-Department: Deptl

SE1 IE1 DE1
SEZ IE2 DE2
IE3 DE3

Figure 5-6a. lllustrating E-relations

E=Host:

Relation E-relation
Department E-Department
Inventoryltem E-nventoryltem
Supplier E-Supplier

Figure 5-6b. Illustrating the Host E-relation

P-Supplier:

Suppl% Supph# SuppName Address

SE1 S1 Smithsonian 11 Sydney Way ...
= 52 Bruce Jones Inc. 14 Maple Street ...
Pdnventoryltem:

ltem% ltem# ltemName

IE1 11 HP 500 Printer

IE2 12 Epson 1070 Printer

IE3 13 Xerox Laser Printer

P-Department.

Dept¥% Dept# DeptName

DE1 D1 Design

DEZ 02 Research

DE3 D3 Synthesis

Figure 5-6¢. Illustrating The P-relations

P-Host:

Property E-relation Type Length
Depli E-Department Number 04
DeptName E-Department Character 40
termz# E-Inventoryltem Character 08
DeptName E-Inventoryltem Characfer 30
Suppl# E-Supplier Character 08
SupplName E-Supplier Characfer 40
Address E-Supplier Character 45

Figure 5-6d. Illustrating the Host P-relation

As you will later see (in chapter 14), it is application of this methodology that assists
in the implementation of sophisticated system catalogs that characterize contemporary
DBMS suites. However, with this knowledge, you can actually model and design
databases to mirror E-relations and P-relations as described. One obvious advantage
is that if you used one P-relation instead of one for each E-relation, then in accessing
the database for actual data, you would be accessing fewer relations (in fact just one
relation) than if you had used another approach (such as the E-R model). The flip side to
this advantage is that this relation would be extremely large for a medium sized or large
database; this could potentially offset at least some of the efficiency gained from just
having to access one relation for data values.

5.4.4 Integrity Rules

With this set-up, accessing and manipulating data in the database is accomplished by the
DBMS through the E and P relations. For this reason, additional integrity rules must be
imposed. The complete list of integrity rules follows:

1.
2.
3.

Entity integrity rule (review section 4.1)
Referential rule (review section 4.1)

XR Model Entity Integrity: E-relations accept insertions and
deletions but no updates (surrogates don’t change)

Property Integrity: A property cannot exist in the database
unless the tuple (entity) it describes exists

Characteristic Integrity: A characteristic entity (tuple) cannot
exist unless the entity (tuple) it describes exists

Association Integrity: An association entity (tuple) cannot
exist unless each participating entity (tuple) also exists

Designation Integrity: A designative entity (tuple) cannot exist
unless the entity (tuple) it designates also exists

Subtype Integrity: A subtype entity (tuple) cannot exist except
there be a corresponding super-type entity (tuple)

The following rules apply to subtypes and super-types:

1.

All characteristics of a super-type are automatically
characteristics of the corresponding subtype(s), but the
converse does not hold.

All associations in which a super-type participates are
automatically associations in which the corresponding
subtype(s) participate, but the converse does not hold.

All properties of a given super-type apply to the
corresponding subtype(s), but the converse does not hold.

A subtype of a kernel is still a kernel; a subtype of a
characteristic is still a characteristic; a subtype of an
association is still an association.

5.5 Database Design via the XR Model

The following approach, developed by Date and outlined in [Date, 1990], employs the
basic XR method,but relaxes the requirement that surrogates, E-relations and P-relations
are mandatory. The (partial)database model represented in Figure 5-2 will be used for the
purpose of illustration.

Before proceeding, we now introduce a notation that has become necessary: The
notation R.A will be usedto mean attribute A in relation (or entity) R. For instance,
Department.Dept# denotes attribute Dept# in the relation Department. The database
design approach involves seven steps as summarized in Figure 5-7 and clarified in the
upcoming subsections.

Determine kernel entities.

Determine characteristic entities.

Determine Designative entities.

Determine associations.

Determine subtypes and super-types.

Determine component entities.

Determine properties of each entity.

Construct a relation-attribute list (RAL) for each relation,

By consistenily following this procedure, you will obtain a set of relations that will be normalized to at least the Boyce-Codd
normal farm (BCNF). You can then apply your normalization theery until you achieve the desired level of normalization.

LEHN® W

Figure 5-7. Database Design Procedure Using the XR Model

5.5.1 Determining the Kernel Entities

The first step involves determining the kernel entities. As mentioned, earlier, kernels are
the core relations. In the example, the kernels are Department, Employee, Supplier,
Project, and Inventoryltem. Each kernel translates to a base relation. The primary key of
each could be the user controlled ones, or surrogates may be introduced.

5.5.2 Determining the Characteristic Entities

The second step involves determining and properly structuring the characteristic entities.
As mentioned above, a characteristic entity is existence-dependent on the entity it
describes. One characteristic exists in the example, namely Dependent. Characteristics
also translate to base relations. The foreign key in Dependent would be DepnEmp#,
which would reference Employee.Emp#. Notice that we did not use the attribute name
Emp# as the foreign key in Dependent, but DepnEmp#. This decision is based on the
following principle:

It is good design practice to define each attribute so that it is unique to the database (even if the
attribute is a foreign key).

It should be noted that not all DBMS products support this principle (some require
that a foreign key must have the same name as the attribute it references). You should
therefore check to ascertain whether the product you are using supports it (Oracle and
DB2 both do). Two strong arguments can be given in defense of this principle:

* Simply, it makes good sense and leads to a cleaner, more elegant
database design.

e It avoids confusion when queries involving the joining of multiple
relations are constructed and executed on the database. This will
become clearer in division C (particularly chapter 12) of the text.

Moving on to data integrity, we would require the following integrity constraints on
the Dependent relation:

¢ Null FKs not allowed

e Deletion is cascaded from the referenced to the referencing
records

* Update cascaded from the referenced to the referencing records
Two alternatives exist for choice of primary key:

a. The foreign key combined with the attribute that distinguishes
different characteristics within the target enfity
(e.g. [Emp#, DepnName]);

b. Introduce a surrogate (e.g. DepnRef). The surrogate could
be defined in such as way as to allow you to key solely on it;
or it could be defined to allow you to key on the foreign key,
combined with it (e.g. [Emp#, DepnRef]).

5.5.3 Determining the Designative Entities

This third step involves identifying and properly structuring the designative entities.
As mentioned earlier, a designation is a 1:M or 1:1 relationship between two entities. In
the example, designations are ProjMgr, DeptEmp, and EmpDep. However, EmpDep is a
characteristic (that has already been identified above).

From the theory established in chapter 3 (section 3.5.4), a designation is implemented
by the introduction of a foreign key in the relation for the designating entity. Following
this principle, we would introduce foreign key, EmpDept# in relation Employee (where
EmpDept# references Department.Dept#), and foreign key, ProjManagerEmp# in
relation Project (where ProjManagerEmp# references Employee.Emp#).

Integrity constraints for designations would typically be:

 Null FKs allowed in the designating entity if the participation
is partial

 Null FKs not allowed in the designating entity if the participation
is full

e Deletion of referenced records restricted

¢ Update of referenced records restricted (although for some
practical purposes, update could be cascaded)

Typically, the foreign key in a designative entity is a non-key attribute. Consequently,
there are normally no keying issues. However, there could be exceptions to this
observation (for instance in the case where an intersecting relation is introduced to
implement a M:M relationship).

5.5.4 Determining the Associations

Step 4 involves identification and implementation of all associations. As mentioned
earlier, associations are the implementation of M:M relationships. They translate to
base relations. In the example, associations are ProjWork, Suppltems, ItemStruct,
and SuppSched. Again relying on the theory established in chapter 3 (section 3.5.4)
on the implementation of M:M relationships, we would introduce four base relations
for the four associations — ProjWork, Suppltems, ItemStruct, and SuppSched.
However, as established in chapter 4 (section 4.10), SuppSched should be replaced
with three relations, namely Suppltems{Suppl#, ltem#}, ItemProj{ltem#, Proj#}, and
ProjSupp{Proj#, Suppl#}. Additionally, and in keeping with the principle of having
unique attribute names for the entire database, we will change the foreign key attribute
names to names that are unique but easily traceable to the attributes they reference.
Integrity constraints for associations would typically be:

e Null FKs not allowed
e Deletion of referenced records restricted

¢ Update of referenced records restricted

Two alternatives exist for choice of primary key:
a. Key on the aggregation of the foreign keys.

b. Introduce a surrogate and key on it.

5.5.5 Determining Entity Subtypes and Super-types

The fifth step relates to identifying and properly implementing subtype-super-type
relationships among the entities. Care should be taken here, in not introducing subtype-
super-type relationships where traditional relationships would suffice (review section 3.5).
Each entity type translates to a base relation. Each base relation will contain attributes
corresponding to properties of the entities that apply within the type hierarchy. Again
being guided by principles established in chapter 3 (section 3.5.4), each subtype will
share the primary key of its super-type. Further, the primary key of a subtype is also the
foreign key of the said subtype. The illustrations provided in chapter 3 (Figures 3-11 and
3.12) are also applicable here.

No subtype-super-type relationship appears in the model of Figure 5-2. However,
in Figure 5-3, there are a few: Programmer, Engineer and Accountant are subtypes
of Employee; SystemProgrammer and ApplicationProgrammer are subtypes of
Programmer. Note also that in a subtype, except for the primary key (which is also a
foreign key), no additional attributes of the super-type need to be repeated, since they
are inherited. However, additional attributes may be specified (in the subtype). For
example (still referring to Figure 5-3), the Programmer entity may contain the attribute
ProgLanguage to store the programmer’s main programming language; this would not
apply to Employee.

For subtypes, integrity constraints on foreign (primary) keys may be:
e Nulls not allowed
e Deletion of referenced records restricted (in super-type)

* Deletion of referencing records allowed (in subtype but not in
super-type)
¢ Update cascaded from the super-type

5.5.6 Determining Component Entities

Component entities were not discussed in Date’s original work on the database design
via the XR model. However, in the interest of comprehensive coverage, this sub-section
has been added. As mentioned in the previous sub-section, care should be taken in

not introducing component relationships where traditional relationships would suffice
(review section 3.5). Each entity type translates to a base relation. Each base relation will
contain attributes corresponding to properties of the entities that apply within the type
hierarchy. Again being guided by principles established in chapter 3 (section 3.5.4), each
component will include a foreign key, which is the primary key in the summary relation.

Further, this foreign key will form part of the primary key (or a candidate key) in the
component relation. For examples, please refer to figures 3-11 and 3.12 of chapter 3.
For components, integrity constraints on foreign (primary) keys may be:

Null FKs not allowed
¢ Deletion of referenced records restricted (in summary)

¢ Deletion of referencing records allowed (in component but not in
summary)

e Update cascaded from the summary

5.5.7 Determining the Properties

The final step in this (modified) XR approach is to carefully determine the properties in
each relation (entity). This is actually easy, but in order to avoid mistakes, you must be
diligent:

e Except for associations, in your initial system investigation (which
would be part of the required software engineering or systems
analysis), you would have identified the basic properties for each
identified entity. That is your starting point.

e Next, go through steps 1-3, 5, and 6 above, and observe the
guidelines for dealing with characteristics, designations, subtypes
and components. These steps tell you when and where to
introduce foreign keys.

e Next, observe step 4 above for treating associations.

By following this procedure, you will be able to confidently determine the properties
for each relation in the database; in fact, you will end up with a list that is identical or very
similar to the one provided in Figure 5-5 above. This finalized list is illustrated in Figure 5-8.
As you examine the figure, please note the following:

1. All primary key and foreign key attributes are italicized.

2. The principle of having each attribute with a unique attribute
name (including foreign keys) has been followed.

3. The database specification is presented via a Relation-
Attributes List (RAL) — a technique introduced in chapter 3
(section 3.6).

Aelation | Propertios (Alirituies] ICumm:rt
Hemels:
Dapartmen! Dopi The grimary kay
Dioziblame
E=pioves Empl The primary kay
Empaame
Empliapt Artzrences Departmont Dephé
Suppliar Supp¥ Tha primary oy
Gpplbame
Project P Tha primany kay
Fro{Mame
ProllansgeEmpd Aedzrances Employes Empd
neantondlem e Tha grirary kay
Characsaristics
Dapandant apn Rt Surogats and primary kay
Deznhams
OegnEmps Artarances Employes. Expd
b 18R et
Supplemrs SlSupnd Aelsrances Supplise Supp
Shre Anlarances Freenlorplle= lsrd
Shral Surogats st prirany key
L= Prej JaA Aplarances Fuenlonglie= lamd
PEroW Al rances Project Projll
JLaTl Surogals aid oriran key
ProiSups PSPl Rulerences Project Projil
P Eupsil Auterances Supplisr Suppll
FSitel Surogate and prmany ey
Frojiork PHEmpi Aufzrences Employes.Expd
FHPmi Autzrences ProjectProjf
FHiRal Surogate and primary ey
e Struct 15 Thiskamd Artzrences ventorghine omd
[&Commbam Artzrences Inventorghios Homd
I&Raf Surogate and primarny key
Mote: Primary kay werbutes and formgn keys am fabioze,

Figure 5-& Partial Database Specification for Section of Manu@cturing Firm's Database

With this additional information, you can now revisit the database specification of
chapter 3 (Figures 3-4b, 3-13 and 3-14) and revise it accordingly (left as an exercise for you).
In so doing, please observe that while the ERD of Figure 5-2 is similar to that of Figure 3-4b,
they are not identical; they highlight different aspects of a manufacturing environment, with
various areas of overlap. By examining both figures, you should come away with a better
sense of what a database model and specification for such an environment would likely entail.
The key is to apply sound information gathering techniques (as learned in your software
engineering course and summarized in appendix 3), coupled with your database knowledge.

5.6 The UML Model

An alternate methodology for database modeling is the Unified Modeling Language (UML)
notation. UML was developed by three contemporary software engineering paragons —
Grady Booch, James Rumbaugh and Ivar Jacobson. These three professionals founded
Rational Software during the 1990s, and among several other outstanding achievements,
developed UML for the expressed purpose of being a universal modeling language. Although
UML was developed, primarily for object-oriented softiware engineering (OOSE), it is quite
suitable for database modeling. Figure 5-9 provides a description of the main symbols

used in UML. Note that with UML comes a slight change in the database jargon (“entity” is
replaced with “object type”), consistent with the fact that UML is primarily for OOSE.

The object symbel indicatas the name of the object type, fe atiributes of the object typa, and
thie opaeralions defined on the objact. However, since Share are alamate ways of accounting
for attibules {revierw sacfion 16, and sea seclion 5.8), wa wil de-emphasize the inclusion of
attrbutes on the object type symiol. Addifiznally, bo aveid clutaring, we wil forego the
inclusion of oparalions dafined on the object Wi this convantion, the object type symbol is
similar to e enlity symbal

Obect Typa

02 is a subtype of O1. Conwarsely, 01 is a supar-typs of 02.

™ 'Sr) 01 is a subtype of 02 Convarsaly, 02 is 8 super-type of 01

02 ard OF are aggregations of 01, They exisl
redependent of 01
3

a2
02 and 03 ere companenis of 01 They da not
exiat indapendent of 01,

3

Riolat Roksi
A ling connacting two obped types represents a relationship (alsa called an
association in OOSE taminalogy); the muplicity (caminalty) of this
R [k | redationship is indicatad by a pair of inlegars naxt fo each object fyoe (lowast
value is indicated firsl, and an asterisk ks sometimes used lo mean “many”).
The rola that each object plays in fhe relafionship is also indicaled naxd o the
object type. This convantion is similar, but nol identical fo the Chen nodation

°

Figure 5-9. Symbols Used in UML Notation for Database Modeling

Note that the UML notation makes a distinction between a component relationship
and an aggregation relationship. In the case of the component relationship, the
constituent object types are existence dependent on a main object type. In the case of an
aggregation relationship, the constituent object types are existence independent of the
aggregation object type. Figure 5-10 illustrates the UML diagram for the (partial) college
database model that was introduced in chapter 3 (Figure 3-11). Notice that except for the
StudentEmployee object type, which has been omitted, the information represented is
essentially similar to what was represented in Figure 3-11. The only difference here is that
the appropriate UML symbols have been used.

CallegeMember

Employes

Belonns [1.1]

Sudeni
[1.1]
Enralied-in
Em
Facilitates ploys
2.7 1.7
Department

EmployesPersonallnfo

EmployesEmploymentHistory

EmpleyesAcademicLog

Employe=PublicationsLog

EmployesExtraCumicular

EmployeaDependentsLog

Figure 5-10. UML Diagram for a Partial College Database Model

Let us examine another example: Suppose that you were hired at a large marketing
company that needs to keep track of its sales of various products and product lines over
time. Suppose further that the company operates out of various offices strategically
located across the country and/or around the world. How would you construct a database
conceptual schema that would allow the company to effectively track its sales? One way to
solve this problem is to employ what is called a star schema — a central relation (or object
type) is connected to two or more relations (or object types) by forming a M:1 relationship
with each. Figure 5-11 illustrates such a schema for the marketing company. The central
relation (often referred to as the fact table) is SalesSummary. The surrounding relations
(often referred to as dimensional tables) are Location, TimePeriod, ProductLine, and
Product. Each forms a 1:M relationship with SaleSummary, the central relation. Notice
that consistent with the theory, SalesSummary has a foreign key that references each of
the referenced relations (object types). Finally, observe also that in this illustration, the
attributes for each relation (object type) have been included in the diagram.

Location 0,7 [0,4| TimePeriod
LocCode [[.1 TmCode
LocMame TmYear
LocCity SalesSummmary TmMonth
LocState S5 TmCode TmCommment
. 35 LocCode ,
Primary Key [LocCode] 35 _PLCode Brimary Key [TmCode]
35_PrdCode
35 _Salelnits :
11,1 | S5_SaleAmount [1.1]
0.7 55 ReferanceNo [0,
Product ProductLine
Primary Key [55_ReferenceNo]
PrdCode PLCode
PrdMame Alternate Key [S5_TmCode, PLName
PrdDescription 55 LocCode, S5_PLCode, PLDescription
S5_PrdCode]
Primary Key [PrdCode] Primary Key [PLCaode]
Mote: The allribule SaleSummary,55_ReferenceMo has been inlroduced as a surrogale, lo avoid
having a composite primary key. Also observe that attributes 58_TmCode, 55_LocCode, SS_PLCode,
and §5_PrdCode are foreign keys that have already been introduced.

Figure 5-11. UML Diagram for Tracking Sales Summary for a Large Marketing Company

5.7 Database Design via the UML Model

Database design with the UML model is somewhat similar to database design with the
E-R model. The points of divergence relate to the differences in notation between the
two approaches as well as the semantic jargon used. The rules that prescribe bow to treat
various types of relationships (section 3.5.4) are still applicable. However, in order to be
consistent with object-oriented (00) terminology, you would replace the term relation
(or entity) with the term object type. With this in mind, we may construct a procedure for
database design via the UML model as follows:

Identify all abject types and their related attributes

Identify all relationships amang the object types

Classify the relationships (mandatary versus optional); decide on which oplional relationships will be retained and

which ones wil be eliminatea,

4. Construct an O-R diagram using UML notation or the equivalent (review chapter 3).

Refine the model.

. Lsing the guidelines for implementing relationships (section 3.5.4), construct a final sef of object types, clearly
indicating for each object fvpe, its attributes, candidate key(s), and primany key, | you do not have the approprate
database modeling and design tools, construct an objecl-type-attributes [ist (OAL) similar to the RAL of chapler 3, and
a RL (review section 3.4).

7. By consistently following this procedure, you will obtzin a set of object types that will be normalized to at least the Boyce-

Codd nommal form (BCNF). Youw can then apply your normalization theary until you achieve the desined level of
narmal izafion

e ba s

Sl

Maote: The illustrations given in chapter 3 (figures 3.4b, 3.1, 312, 3.13, ana 3.14) are applcable here.

Figure 5-12. Database Design Procedure Using the UML Model

Note: Due to the inherent behavior of typical 00 software products, introducing
primary keys and foreign keys into object tvpes (implemented as classes) as we
have prescribed, may be unnecessary. In a purely OO environment, these links are
automatically introduced by the 00 software and implemented as pointers — a feature
called encapsulation; however, they are internal and cannot be tracked by the user. For
this reason, many 00 pundits argue that normalization and data independence run
counter to inheritance and encapsulation. The debate as to when to use an 00 database
versus a relational database and vice versa, is likely to be ongoing for some time into the
foreseeable future. It will be revisited in chapter 23.

5.8 Innovation: The Object/Entity Specification Grid

This section introduces an innovative approach to database design specification that has
been successfully used by the author on a number of major projects. The approach may
be construed as an extension of the UML model, but is applicable to any database model.
As mentioned in chapter 3 (section 3.6), for large complex projects (involving
huge databases with tens of entities or object types), unless a CASE or RAD tool which
automatically generates the ORD or ERD is readily available, manually drawing and
maintaining this important aspect of the project becomes virtually futile. Even with a
CASE tool, perusing several pages of O-R (E-R) diagram may not be much fun. In such
cases, an object/entity specification grid (O/ESG) is particularly useful. In a relational
database environment, the term enfify specification grid (ESG) is recommended; in an
object-oriented environment, the term object specification grid (0OSG) is recommended.

" The O/ESG presents me.speciﬁcatim; for each object t;lpe {.Dl' Eﬁtity} as it will be
implemented in a database consisting of normalized relations. The conventions used for
the O/ESG are shown in Figure 5-13; a summary of these conventions follows:

+ Each object type (or entity) is identified by a reference code, a
descriptive name, and an implementation name (indicated in
square brackets).

* For each object type (or entity), the attributes (data elements) to
he stored are identified.

+ Each attribute is specified by its descriptive name, the
implementation name indicated in square brackets, a physical
description of the attribute (as described below), and whether the
attribute is a foreign key.

* For physical description, the following letters will be used to
denote the type of data that will be stored in that attribute,
followed by a number which indicates the maximum length of
the field: (A) alphanumeric, (N) numeric, or (M) memo. This is
specified within square braces. For instance, the notation [Dept#)
[N4] denotes a numeric attribute of maximum length 4 bytes.

In the case of an attribute that stores a memo (M), nolength is
indicated because a memo field can store as much information
as needed. If a real number value is being stored with a decimal
value, two numbers will be used: the first number will indicate
the length for the whole number part and the second number will
indicate the field length of the decimal part (e.g. [N(9,2]]).

¢ An attribute that is a foreign key is identified by a comment
specifying what object type (or entity) is being referenced. The
comment appears in curly braces.

+ For each object type (or entity) a comment describing the data to
be stored is provided.

¢ Anitemized specification of indexes to be defined (starting with
the primary key) is provided for each object type (or entity).

FEach operation to be defined on an object type (or entity) will be
given a descriptive name and an implementation name, indicated
in square brackets.

Reference Number — Descriptive Name [Imiplementation Name]

Attributes:
I Itemized specification of a7 atirbutes of this object type {or antity] ™/

Comments:
* & brief descripton of the slorage purpose of fhis object bype (or entity) */

Indexes:
* Remized specification of anticipated indexes, startng with the primary key */

Valid Operations:
™ Nemnized list of operations to be defined on this object lype (or entity) ™/

Figure 5-13. O/ESG Conventions

Figure 5-14 provides an illustration of O/ESG for four of the object types (or entities)
that would comprise the manufacturing firm's database of earlier discussion (review

Figure 5-7). In actuality, there would be one for each object type (or entity) comprising
the system.

E1 —Department [RMDepartment_BR]

Attributes:

01. Department Number [Dept#] [N4]

02. Department Name [DeptMame] [A35]

03. Department Head Employee Number [DeptHeadEmp#] [N7] {Refers to E2.Emp#}

Comments:

This table stores definitions of all departments in the organization.
Indexes:

1. Primary Key Index: RMDepartment_NX1 on [01]; constraint EMDepariment_PK.
2. EBMNXDepartment2 on [02]

Valid Operations:

1. Maintain Depariments [RMDepartment MO]

1.1 Add Departments [RMDepartment_AQ]

1.2 Update Departments [RMDepariment_UQ)]

1.3 Delete Depariment [RMDepartment_Z0]

2. Ingquire on Departments [RMDepartment_ICl]

Figure 5-14. Partial O/ESG for Manufacturing Environment

EZ —Employes [RME=pioyee_BR]
Atrbutes:

. Emplorpes lentficrion Mamber [Snpl] W)

82, Emplopes Lasl Mame [EmsLMams| [A25]

53, Emploen First Mame [EmpF Mame] [A20]

3. Emplopeo Midde ity [Emphding] [A2]

6. Empioyeo Caie of Birkh [Emp0i08] i

3. Empioyee's Department [EmpDapte] [N4] {Sefars to E1. Daptf;
7. Employen Goncar [EmpGender] 1]

oH. Emplopan Martal Status [EmpbdSlabus] [81]

4. Employen Socil Sscurty Mumizer [EmpS58] (N10)

10. Empioyan Home Toleprona Mumbar EmpHomaTad (414
11 Empioyai Wik Teleprone hurmber [Emgpéon Tal] [A10]

Commaerts:
This table stones standard imlermaiion abou al omplcyoss in tha organtzabon,

rdxes:

1. Primary Ky Incios: RMEmployes WK1 on 1] constraint RMEmpioym._P%.
2. RMEmployag W2 on |32, [0, M|

1 RMEmpiopen k0 an [26)

4. RMEmpiopee WE4 on [10]or [11]

Walid Operatives:

1. Marmge Emokovesss [RMEmpopes NO|
1.1 Asd Emgloyeas [RMEmplopes A0]

1.2 Updain Empioyeas [FMEmployes 0]
1.3 Doletn Emplopeos [RMEsployos, 70

i Inquire on Employees [RMEmpioyes 10
1 Report on Empioyees AMEmplowen_ RO

L3 —EZuppier [RMSupclier [8)

Allrbites

o1 Supplier Nurmbeer [5upp] k)

02 Bupplier Marme [SusplName] [A35]

03. Supplier Cartac! Marme [SuppiCortac] [A55]

& Suppler Telephons Murmbars [SuppPhone] [A30)
25, Bupplier Esmal Adcress [SuppE=all [A30]

Commeris
This lshis sloma definlions of al arploves chssiicalions

Pdigis:

1, Prmary Koy Ingee AMSupsier X1 on TN consiant RMSuzpil_ P,
% PMSuzplar N2 o 03

3. RMSuppler WY cn [d]

Valid Operalises.
1 Manags Supph e RMSIpHer NG|
1.1 Akd Supezbans [FNGL ppliar_N3]

1.7 Upearia Suppiars [FAMGupiar_LI0]
1.3 Daota Suppiars RMSuzpiee 707

Z. Inie on Suppiens [FMSuepie_i2Y
3. Regod on Suppliers RN Suspie RO

Figwre 5-14. Particl O/ESG for Monufecturing Environment | comtinued |

E4 — Project [RMProject BR]

Attributes:

01. Project Number [Proj#] [N4]

02. Project Name [ProjName] [A15]

03. Project Summary [ProjSumm] [M]

04. Project's Manager [ProjManagerEmp#] [N7] {References E2.Emp#}

Comments:
This table stores definitions of all company projects.

Indexes:
1. Primary Key Index: RMProject_NX1 on [01]; constraint RMProject_PK.
2. BMProject NX2 on [02]

Valid Operations:

1. Manage Projects [RMProject_MO]
1.1 Add Projects [RMProject_AQ]

1.2 Update Projects [RMProject_UQ]
1.3 Delete Projects [RMProject_ZO]

2. Inquire on Projects [RMProject_IO]
3. Report on Projects [RMProject_RO]

Figure 5-14. Partial O/ESG for Manufacturing Environment (continued)

5.9 Database Design via Normalization Theory

Although this is seldom done, you can actually use the normalization theory as discussed
in chapter 4 to design the basic conceptual schema (involving the structure of the base
relations) of a relational database. In practice, normalization is used as a check-and-balance
mechanism to acceptability of a database’s conceptual schema. As such, normalization can
(and should) be applied to each of the database design approaches discussed.

This section looks at two sample database design problems, and shows how the
normalization theory can be used to solve them.We will advance the discussion by using
two problem scenarios that will hopefully identify with.

5.9.1 Example: Mountaineering Problem

Suppose that we wish to record information about the activities of mountaineers in a
relational database. Let us make the assumption that a climber can only begin one climb
per day. Figure 5-15 illustrates an initial set attributes (with suggested implementation
names in square brackets) for the database.

Begin Date [BDATE]
End Date [EDATE]
Climber Name [CNAME]
Climber Address [CADDR]
Name of Mountain [MNAME]
Height of Mountain [MHGHT]
Country of Mountain [CTRYNM]
District of Mountain [DIST]

Figure 5-15. Attributes for the Mountaineering Problem

How may we obtain an appropriate conceptual schema for the mountaineering
problem? We may approach this problem in one of two ways:

e The Pragmatic Approach: Identify related attributes that form data
entities, normalize these entities, then identify and rationalize

relationships among the entities.

e The Classical (theoretical) Approach: Start out by creating
one large 1NF relation involving all attributes, progressively
decompose into relations of higher normal forms until the given

re qt]l rements are met.

In the interest of illustrating application of the theory of normalization, we shall
pursue the second approach. However, please bear in mind that in most real life
situations, you will be advised to employ the pragmatic approach. Several of the cases in
chapter 26 (for instance, assignments 1 and 2) provide an excellent opportunity for you to
do this.

Step 1 — Create a large 1NF Relation

We introduce three new attributes: Climber Identification [CID#|, Mountain
Identification [MTN#|, and Country Code [CTRYCD]; store all attributes as relation M as
shown in Figure 5-16. The figure also states the observed functional dependencies.

Relation M:

Primary Key [BDATE & CIDw]
Begin Date [BDATE]
End Date [EDATE]
Climber Identification [CID|
Climber Name [CNAME]
Climber Address [CADDR]
Mountain Identification [MTN#|
Name of Mountain [MNAME]
Height of Mountain [MHGHT]
Country Code [CTRYCD]|
Country of Mountain [CTRYNM]
District of Mountain [DIST]

Functional Dependencies:

FD1: [BDATE, CID#] & EDATE, CNAME, CADDR, MTN# MNAME, MHGHT, CTRYCD, CTRYNM,
DIST

FD2: CID# = CNAME, CADDR

FD3: CTRYCD = CTRYNM

FD4: MTNi# - MNAME, MHGHT, DIST, CTRYCD, CTRYNM

Figure 5-16. Revised Initial INF Relation for the Mountaineering Problem

Step 2 — Obtain 2NF Relations

The second step is to obtain a set of 2NFrelations. Because of this FD2, the relation can be
non-loss decomposed via Heath'’s theorem to obtain:

Relation M1: {CID#, CNAME, CADDR} PK [CID#]

Relation M2: {BDATE, CID#, EDATE, MTN#, MNAME,
MHGHT, CTRYCD, CTRYNM, DIST} PK [CID#, BDATE]

Step 3 — Obtain 3NF Relations

Next, we seek to obtain 3NF relations. Based on FD3 and FD4, relation M2 is not in 3NFE.

Again applying Heath's theorem for non-loss decomposition, we obtain the following
relations:

Relation M3: {CTRYCD, CTRYNM} PK [CTRYCD)

Relation M4: {MTN#, MNAME, MHGHT, CTRYCD, DIST} PK
[MTN#]

Relation M5: {BDATE, CID#, MTN#, EDATE} PK
[CID#, BDATE]

Step 4 — Obtain BCNF (and higher order) Relations

Next, we seek to obtain relations of higher order normal forms. Observe that relations M1,
M3, M4, and M5 are in BCNE 4NF and 5NE

Note: We could have forgone steps 1-3 and gone straight for BCNF relations by
simply observing the FDs shown in Figure 5-16, and decomposing via Heath's theorem.
As your confidence in database design grows, you will (hopefully) be able to do this.

5.9.2 Determining Candidate Keys and then Normalizing

In many cases, the database designer may be faced with the problem where basic
knowledge of data to be stored is available, but it is not immediately clear how this
partial knowledge will translate into a set of normalized relations. For instance, you
may be able to identify an entity (or set of entities), but are not sure what the primary
key(s) to this (these) entity (entities) will be. With experience, you will be able to resolve
these challenges intuitively. However, what do you do in the absence of that invaluable
experience? The relational model provides a theoretical approach for dealing with this
problem, as explained in the following example.

Suppose that it is desirable to record the information about the performances of
students in certain courses in an educational institution environment. Assume further,
that a set of functional dependencies have been identified, but it is not sure what the final
set of normalized relations will be and how they will be keyed. Figure 5-17 illustrates a
summary of the information (assumed to be) known in the case. As usual, we start off by
assuming that the relation shown (StudPerfDraft) is in INE

Relation StudPerfDraft:

Course [C]
Teacher [T]
Hour [H]
Room [R]
Student [5]
Grade [(F]

Functional Dependencies:
FDI:(H,R] = C

FD2: [H, T] =2 R

FD3: |C, 8] =2 G

FD4: [H, 8] 2 R
FD5:C=>T

Figure 5-17. Initial INF Relation for the Student Performance Problem

Step 1 — Determine the Candidate Key

Having assumed that StudPerfDraft is in 1NF, our next step is to determine a candidate
key of the relation. We do this by chasing the explicit and implicit dependencies. Any FD
that ends up determining all attributes (directly or indirectly) constitutes a candidate key.

The technique is referred to as computing closures.

The closure of an FD, denoted FD', is the set of all implied dependencies.

We shall examine each explicit FD in turn and determine all the attributes that it
determines (explicitly or implicitly), bearing in mind that any attribute or combination
of attributes that is a determinant, necessarily determines itself. Hence, we conclude the
following:

¢« HR->CHR-> CTHR

¢« HT-> HTR > HTRC

e« (CS->CSG->CSGT

* HS > HSR- CHSR - CHSRG > CHSRGT
¢« C=>CT

From this exercise, observe that [H,S] is the only candidate key; it is therefore the
primary key (PK).

Step 2 — Obtain 2NF Relations

The next step is to obtain 2NF relations. We may rewrite the initial relation as follows:
StudPerfDraft {H, S, C, T, R, G} with PK [H,S]

Observe that StudPerfDraft is in 2NE

Step 3 — Obtain 3NF Relations

Step 3 is to obtain 3NF relations. StudPerfDraft is not in 3NF due to FD5 (C >T). To
resolve this, decompose via Heath's Theorem to obtain:
R1{H, S, C, R, G} with PK [H,S] and R2 {C T} with PK [C].

Step 4 — Obtain BCNF Relations

Our fourth step is to obtain a set of BCNF relations. Observe that R2 is in BCNF but R1 is
not, due to FD3 ([C,S] = G). To resolve this, decompose via Heath'’s theorem to obtain:

R3{C, S,G} with PK [C,S] and R4 {H, S, C, R} with PK [H,S].

R3 is now in BCNF but R4 is not, due to FD1 ([H,R] = C). Decompose via Heath's
theorem to obtain:

R5 {H, R, C} with PK [H,R] and R6 {H, S, R} with PK [H,S].

We now have R2, R3, R5, and R6 all in BCNE. Additionally, note that all the FDs
have been resolved, except for FD2 ([H,T] = R). This may be resolved by introducing the
relation R7 as follows:

7{H, T, R} with PK [H, T].

Step 5 - Obtain Higher Order Normalized Relations

There are no MVDs or]Ds, therefore relations R2, R3, R5, R6 and R7 are in 4NF and 5NFE
Note:

1. This is a rather trivial example; a college database is a much
more complex system than the representation presented
here. Moreover, questions may be raised as to the veracity
of some of the FDs stated (for instance FD5). However, the
representation succeeds in providing the application of the
normalization theory, and that was the sole intent.

2. Relation R6 fulfills FD4 ([H,S] = R), and R7 fulfills FD2
([H, T] = R). Strictly speaking, R7 may be considered
redundant, since we can determine what teacher is in a room
at a given time by accessing R5 and R2.

5.10 Database Model and Design Tools

At this point you must be wondering, how in the world are you supposed to model and
design a complex database, and keep track of all the entities and relationships? The good
news is, there are various tools that are readily available, so there’s no need to panic. The
standard general purpose word processors (such as MS Office, Word Perfect, Open Office,
etc.) are all fortified with graphics capabilities so that if you spend a little time with any
of these products, you will figure out how to design fairly impressive database model/
design diagrams. Better yet, there is a wide range of CASE tools and/or modeling tools
that you can use. Figure 5-18 provides an alphabetic list of some of the commonly used
products. While some of the products in the list are quite impressive, the list is by no
means comprehensive, so you do not have to be constrained by it. Some of the products
are available free of charge; for others, the parent company offers free evaluation copies.

Product

Parent Company

Comment

ConceptDraw

C5 Odessa

Supports UML diagrams, GU| designs, floweharts, ERD,
and project planning chars.

Datafrchitect

thekKompany.com

Supports logical and physical data medeling. interfaces
with ODBC and DBMSs such as MyS0L, PoslgreSaL,
DB2, MS SOL Server, Gupta SOLBase, and Oracle. Runs
on Linux, Windows, Mac 08 X, HP-UX, and Sparc Solaris
platforms.

Database Design Tool (DOT)

Open Sounce

A basic tool that allows database modeling that can
impard or export SCIL.

Catabase Desgn Studio

Chilli Source

Allows modeling via ERD, data structure diagrams, and
data definition language (00L) scripts. Three products
are marketad: DDS3-Pro is ideal for large dalabases; DDD-
Lite is recommended for smail and medium-sized
databases; SOL-Console is 2 GUkbased tool that
connects with any database that supparts QDBC.

DEDesigner 4 and
MySOL Warkbench

Dedign

fanFORCE net

Datamanmic

This original product was developed for the My SCL
database. The replacement version, MySOL Workspace
is targeted for any datahase environmend. and is cumently
available for the Windows and Linux platforms.

Faciltates easy development of ERDs and generation of
corresponding SOL code. Supporls DBMSs including
Oracle, M3 3QL Server, MySQL, 18M DBZ, Firebird,
ImerBase, M3 Acoass, PostgraSOL, Paradox, dBase,
Pervasive, Infarmix, Clipper, Fozpro, Sybase, S0Lie,
ElgvateDB, MexusDB, DEISAN.

Enterpise Architect

Spar: Syslems

Faciitaies UML diagrams that support the entire software
development life cycle (S0LC). Includes support of
business madeling, systems enginsering, and enterprise
architecture. Supports reverse enainearing a5 wall.

ER Craator

Madal Creator
Software

Allewrs for the creation of ERDs, and the generation of
S0L and the generation of corresponding DOL scripts,
Also facilitates reverse engineering from databases that
suppor ODBC.

ER Dizgrammer

Embarcadarn

Sirnilar to ER Crealor

Figure 5-18. Some Commonly Used Database Planning Tools

Praduct

Parnent Company

Cormiment

ERYin Data Modeler

Compuler Associaies

Facilitates creation and maintenance o data sirectures for
datanages, data warehouses, and anterprise data
resourcas. Runs on the Windows platform. Compatible
with halerogensous DBMSs

MagcDraw

Mo Magic

A redativaly new product that has just been introduced o
the markes. Appears io be similar to Enterprise Archifect.

Oracle Designer

Oracla

Supports design for Oracle deisbases.

Oracle JDavelopar

Qracle

Supports UML disgramming.

Power Designer

Supposts UML, business process modeling, and dala
madaling. Inkegrates with development tools such as
MET, Power Builder (a Sybase Preduct), Java, and
Eclipse. Also integrates with the major DAMSs.

SmertDraw

SmarfDraw

A graphics software tha faclitates modsaling in the related
disciplines of business enterprise phanning, software
anginearing, databasa modeling, and information
engineering (IE). Provides owar 100 different tamglates
(baszad on different methodologies) that you can chooss
from. Supportad methodologies include UML, Chen
Modation, IE Hotation, eic.

TogetharSof

Borand

Provides UML-based visual modeling for vasious aspects
of the software development [ife cycle (SDLC). Allows
genersfion of DOL soripls from fhe dala model. Also
supports forward and reverse engineering for Java and
C++ code,

I Tookil for Goncegtual
Madsling (TCM)

University of Twenle,
Holand

Includes variaus rasources for traditional software
enginesring mefhodologies as well as ohject-onentad
methodolegies based an the UML standards.

Wisio

Micrasaft

Fatilitates madelng in support of business anterprise
plarining, soltware enginearing, and dalanase
managemant.

Wisual Though

CERN

Sirndar bo Vigio but is fres

Resolufion Software

A database modeling tool that supports all aspects of the
datanase development life cycle (DOLC it supports ERD
design, documentation, SOL code generation, kxgical and
physical migration across multiple DBMS platforms, and
data analysis.

Figure 5-18. Some Commonly Used Database Planning Tools (continued)

5.11 Summary and Concluding Remarks

It is now time to summarize what we have covered in this chapter:

¢ A database model is a blueprint for subsequent database design.
It is a representation of the database. We have looked at three
database models: the E-R model, the XR model and the UML
maodel.

¢ Database design involves preparation of a database specification,
which will be used to construct the database. We have discussed
database design via the E-R model, the XR model, the ML
madel, the O/ESG, and normalization theory.

¢ The E-R modelis the oldest model for relational databases that
has been discussed. It involves the use of certain predefined
symbols to construct a graphical representation of the database.

« Database design via the E-R model involves following eight steps
that lead to a normalized database specification.

¢ The XR model is an alternate model that compensates for the
weaknesses in the E-R model. It involves grouping information
entities into different predefined categories that will assist in the
design phase.

* Database design via the XR model involves following nine steps
that lead to a normalized database specification.

¢ The UML model is similar to the E-R model. However, it requires
taking an object-oriented approach, and employs different
notations from the E-R model.

* Database design via the UML model involves following seven
steps that lead to a normalized database specification.

¢ The O/ESG methodology describes an efficient way of developing
a comprehensive, normalized database specification.

* Database design via normalization theory describes a
rudimentary approach to database design that relies on mastery
of the principles of normalization.

You are now armed with all the requisite knowledge needed to design quality
databases. However, you will likely find that a review of this and the previous two
chapters, along with practice, may be necessary until vou have gained mastery and
confidence with the concepts, principles and methodologies. The next chapter discusses
the design of the user interface for a database system.

