Fuzzy Inference and Defuzzification

Michael J. Watts

http://mike.watts.net.nz

Lecture Outline

- Crisp Rules Revision
- Fuzzy Sets revision
- Fuzzy Inference
- Fuzzy Rules
- Fuzzy Composition
- Defuzzification

Crisp Rules

- Consist of antecedents and consequents
- Each part of an antecedent is a logical expression
 - \circ e.g. A > 0.5, light is on
- Consequent will be asserted if antecedent is true
 - IF (Presentation is Dull) AND (Voice is Monotone)
 - THEN Lecture is boring

Crisp Rules

- Only one rule at a time allowed to fire
- A rule will either fire or not fire
- Have problems with uncertainty
- Have problems with representing concepts like *small*, *large*, *thin*, *wide*
- Sequential firing of rules also a problem
 order of firing

- Supersets of crisp sets
- Items can belong to varying degrees
 o degrees of membership
 [0,1]
- Fuzzy sets defined two ways
 - \circ membership functions
 - MF
 - \circ sets of ordered pairs

- Membership functions (MF)
- Mathematical functions
- Return the degree of membership in a fuzzy set
- Many different types in existence
 - Gaussian
 - Triangular

- Can also be described as sets of ordered pairs
- Pair Crisp, Fuzzy values
 - $\circ A = \{(0,1.0),(1,1.0),(2,0.75),(3,0.5),(4,0.25),(5,0.0), (6,0.0),(7,0.0),(8,0.0),(9,0.0),(10,0.0)\}$
- With enough pairs, can approximate any MF

- Fuzzification
- Process of finding the degree of membership of a value in a fuzzy set
- Can be done by
 - \circ MF

Interpolating set of pairs

- Also have antecedents and consequents
- Both deal with partial truths
- Antecedents match fuzzy sets
- Consequents assign fuzzy sets
- Fuzzy rules can have weightings
 - **[0,1]**
 - \circ importance of rule
 - \circ commonly set to 1

- Restaurant tipping example
- Antecedent variables are

 quality of service
 quality of food
- Consequent variables are

 Tip

Service can b

 Poor
 good
 excellent

 Universe of discourse is 0

 10

- Food can be

 rancid
 good
 delicious
- Universe of discourse is 0-10

Tip can be

cheap
average
generous

Universe of

discourse is 0-25
% tip

- Rules for the tipping system
 - \circ IF service is poor or food is rancid
 - \circ THEN tip is cheap
 - \circ IF service is good
 - THEN tip is average
 - \circ IF service is excellent or food is delicious
 - \circ THEN tip is generous

- Infers fuzzy conclusions from fuzzy facts
- Matches facts against fuzzy antecedents
- Assigns fuzzy sets to outputs
- Three step process
 - fuzzify the inputs (fuzzification)
 - apply fuzzy logical operators across antecedents
 - \circ apply implication method

- Implication is really two different processes

 inference
 - composition
- Inference is the matching of facts to antecedents
- Results in the truth value of each rule
 - degree of support
 - \circ Alpha

- Assigns fuzzy sets to each output variable
- Fuzzy sets assigned to different degrees
- Determined by degree of support for rule
- Methods for assigning (inferring) sets
 min
 - Product

- Min inference
- Cut output MF at degree of support

$$\mu(v)' = min(z,\mu(v))$$

Where:

- is μ he output MF
- is μ' inferred MF
- v is the value being fuzzified
- *z* is the degree of support

- Product inferencing
- Multiply output MF by degree of support

$$\mu(v)' = z \mu(v)$$

Assume

- \circ service is poor
 - score of 2
- \circ food is delicious
 - score of 8
- How do we perform fuzzy inference with these values?

- Firstly, fuzzify the input values
- Service fuzzifies to
 - **Poor 0.8**
 - Good 0.2
 - Excellent 0.0
- Food fuzzifies to
 - Rancid 0.0
 - \circ Good 0.4
 - Delicious 0.6

- Now, calculate the degree of support for each rule
- Rule 1:
 - \circ IF service is poor or food is rancid
 - poor = 0.8
 - \circ rancid = 0.0
 - \circ max(0.8, 0.0) = 0.8
 - \circ Degree of support = 0.8

• Rule 2

- \circ IF service is good
- \circ good = 0.2
- \circ max(0.2) = 0.2
- \circ Degree of support = 0.2

• Rule 3

- \circ IF service is excellent or food is delicious
- \circ excellent = 0.0
- \circ delicious = 0.6
- \circ max(0.0, 0.6) = 0.6
- \circ Degree of support = 0.6

- Apply implication method
- Builds an inferred fuzzy set
- Find the min value for each output MF
- Cut output MF at this value

• Cut at 0.8

Corresponding fuzzy set

 MF = {(0,0),(1,0.2),(2,0.4),(3,0.6),(4,0.8),(5,0.8),(6,0.8),(7,0.6),(8,0.4),(9,0.2),(10,0),(25,0)}

• Degree of support of 0.4

Corresponding set

 MF = {(0,0),(1,0.2),(2,0.4),(3,0.4),(4,0.4),(5,0.4),(6,0.4),(7,0.4),(8,0.4),(9,0.2),(10,0),(25,0)}

How are things different if we use product inferencing?

- Corresponding set
 - $\circ \mathsf{MF} = \{(0,0), (1,0.16), (2,0.32), (3,0.48), (4,0.64), (5,0.8), (6,0.64), (7,0.48), (8,0.16), (9,0.16), (10,0), (25,0)\}$

• Degree of support of 0.4

- Corresponding set
 - $\circ \mathsf{MF} = \{(0,0), (1,0.08), (2,0.16), (3,0.24), (4,0.32), (5,0.4), (6,0.32), (7,0.24), (8,0.16), (9,0.08), (10,0), (25,0)\}$

- Aggregates the inferred MF into one
- Two methods of doing this
 - \circ Max
 - \circ Sum

- MAX takes the max fuzzy value for each value of v
 - equivalent to taking the fuzzy values for the highest activated rule for each output fuzzy set
- SUM sums all fuzzy values for each value of v
 - \circ can lead to truth values > 1
 - may need to be normalised to [0,1]
 - implications for defuzzification

• Assume

- \circ 3 MF attached to the output
 - A, B and C
- Each MF has been asserted by two different rules
 - 6 rules activated (degrees of support) > 0
- Degrees of support
 - 0.8, 0.4, 0.6, 0.5, 0.7, 0.3
- Prod inference used

For Set A

v	0	1	2	3	4	5	6	7	8	9	10
$\mu(v)'$	0	0.16	0.32	0.48	0.64	0.8	0.64	0.48	0.32	0.16	0
	0	0.08	0.16	0.24	0.32	0.4	0.32	0.24	0.16	0.08	0

For Set B

v	7	8	9	10	11	12	13	14	15	16	17
$\mu(v)'$	0	0.12	0.24	0.36	0.48	0.6	0.48	0.36	0.24	0.12	0
	0	0.1	0.2	0.3	0.4	0.5	0.4	0.3	0.2	0.1	0

• For Set C

v	15	16	17	18	19	20	21	22	23	24	25
$\mu(v)'$	0	0.14	0.28	0.42	0.56	0.7	0.56	0.42	0.28	0.14	0
	0	0.06	0.12	0.18	0.24	0.3	0.24	0.18	0.12	0.06	0

Max Composition

MAX composition

 Take the max of each column

U	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mu(v)'$	0	0.16	0.32	0.48	0.64	0.8	0.64	0.48	0.32	0.24	0.36	0.48	0.6
\boldsymbol{v}	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mu(v)'$	0.48	0.36	0.24	0.14	0.28	0.42	0.56	0.7	0.56	0.42	0.28	0.14	0

Max Composition

Sum Composition

Sum composition
 sum each column

v	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mu(v)'$	0	0.16	0.32	0.48	0.64	0.8	0.64	0.48	0.54	0.68	1.02	1.36	1.7
v	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mu(v)'$	1.36	1.02	0.68	0.56	0.68	1.02	1.36	1.7	1.36	1.02	0.68	0.34	0

Sum Composition

Defuzzification

- Converts inferred MF into crisp numbers
- Many different types in existence
- Two common ones
 - Centre of Gravity
 - Mean of Maxima

Centre of Gravity

 CoG

$$y = \frac{\sum_{i}^{K} \mu(v_i) v_i}{\sum_{i}^{K} \mu(v_i)}$$

- Where:
 - y is the crisp value
 - K is the number of items in the fuzzy set

• Applying this to the first composite set

v	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mu(v)'$	0	0.16	0.32	0.48	0.64	0.8	0.64	0.48	0.32	0.24	0.36	0.48	0.6
$v\mu(v)'$	0	0.16	0.64	1.44	2.56	4	3.84	3.36	2.56	2.16	3.6	5.28	7.2
v	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mu(v)'$	0.48	0.36	0.24	0.14	0.28	0.42	0.56	0.7	0.56	0.42	0.28	0.14	0
$v\mu(v)'$	6.24	5.04	3.6	2.24	4.76	7.56	10.64	14	11.76	9.24	6.44	3.36	0

$$\sum_{i}^{K} \mu(v_i) v_i = 121.68$$

 $\sum_{i}^{K} \mu(v_i) = 10.1$
 $rac{121.68}{10.1} = 12.05$

Defuzzification

- Mean of Maxima
 MoM
- Finds the mean of the crisp values that correspond to the maximum fuzzy values
- If there is one maximum fuzzy value, the corresponding crisp value will be taken from the fuzzy set

- Applying this to the first composite set
- Maximum fuzzy value is 0.8
- Corresponding crisp value is 4
- This is the value returned by MoM

- What about sets with > 1 maximum?
- Apply this to the third composite set

v	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mu(v)'$	0	0.2	0.4	0.6	0.8	0.8	0.8	0.6	0.4	0.4	0.6	0.6	0.6
v	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mu(v)'$	0.6	0.6	0.4	0.2	0.4	0.6	0.7	0.7	0.7	0.6	0.4	0.2	0

- Maximum fuzzy value if 0.8
- Corresponding crisp values are 0 4, 5 and 6

$$y = \frac{4+5+6}{3} = 5$$

- Fuzzy rules match fuzzy antecedents to fuzzy consequents
- Degree to which antecedents are true determine the degree of support
- Fuzzy logic functions are used to determine this

- Fuzzy inference involves calculating an output fuzzy set
- Different inference process produces different inferred MF
- Two inferences processes are
 - max-min
 - Max-prod

- Two common composition methods
 - MAX
 - \circ SUM
- Inference methods described by combining inference & composition methods
 - max-min (or min-max)
 - max-prod
- Defuzzification converts a composed MF to a single crisp value

- Different defuzzification methods produce different crisp values

 sometimes wildly different
- Two different defuzzification methods
 - Centre of Gravity
 - CoG
 - Mean of Maxima
 - MoM