IHTENEKTYAJIbHI IHOOPMALIUHI
CUCTEMMU

Jlekuisa 3.

NpoekTyBaHHSA NpocTux 6as
3HaHb



1. lMpuknad npocmoi 6a3u 3HaHb

; This is a very simple example of a CLIPS knowledge base,
; just using the pattern matching to create new knowledge.

; To run this example:

; 1) start CLIPSWin from Explorer

; 2) load the KB with (load "emhl.txt")

; 3) initialize with (reset)

; 4) run the KB with (run)

; 5) to view the facts generated, enter (facts)

; The current fact is for a patient with symptoms of measles.
; To change this, edit the deffacts at the end of this file.

; Before we can define rules and facts, we have to define the
; "variables" used with deftemplate, which defines the concept
; name, as well as the names of all attributes which could be
; given values.

; A "Patient" may have values for fever, spots, rash, sore_throat
; and innoculated.

(deftemplate Patient
(slot fever)



’

’

(slot spots)
(slot rash)
(slot sore_throat)
(slot innoculated))

Thes deftemplates represent conclusions which we may assign

values to as a result of the inference.

(deftemplate Diagnosis

(slot diagnosis))

(deftemplate Treatment

’

Iz

(slot treatment))

In its simplest form, a rule just has a right side which is a
"template" that the inference engine will try to match to some
fact. In this case, it matches a Patient with specific wvalues
for fever, spots, and innoculated (the other values don't matter).

The left side of the => are actions to take if the RHS matches a
fact. In this case, we assert a new fact (Diagnosis (diagnosis

measles))

’

’

and printout the string "Measles diagnosed" to the terminal (t),
followed by a return (crlf).



(defrule Measles
(Patient (fever high) (spots yes) (innoculated no))
=>
(assert (Diagnosis (diagnosis measles)))
(printout t "Measles diagnosed" crlf))

; We can also combine template matches, using the standard connectives
; of and, or, not. Note that the syntax of CLIPS is prefix-oriented.

(defrule Allergyl
(and (Patient (spots yes))
(or (not (Patient (fever high)))
(Patient (innoculated yes))))
=>
(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from spots and lack of measles"
crlf))

(defrule Allergy2
(Patient (rash yes))
=>
(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from rash" crlf))



(defrule Flu
(Patient (sore_throat yes) (fever mild | high))
=>
(assert (Diagnosis (diagnosis flu)))
(printout t "Flu diagnosed" crlf))

; Rules for recommedaing treatments on the basis of
; Diagnosis facts created.

(defrule Penicillin
(Diagnosis (diagnosis measles))
=>
(assert (Treatment (treatment pennicillin)))
(printout t "Penicillin prescribed" crlf))

(defrule Allergy pills
(Diagnosis (diagnosis allergy))
=>
(assert (Treatment (treatment allergy shot)))
(printout t "Allergy shot prescribed" crlf))

(defrule Bed rest
(Diagnosis (diagnosis flu))



=>
(assert (Treatment (treatment bed rest)))
(printout t "Bed rest prescribed" crlf))

; Facts are created with deffacts (the can also
; be directly asserted while in CLIPS). The list
; consists of a name, and a list of facts.

(deffacts Symptoms
(Patient (fever 1low)
(spots yes)
(rash no)
(sore_throat no)

(innoculated no)))



2. ba3a 3HaHb 3 eUKOpUCMaHHSAM eslacmueocmi salience

; This is a very simple example of a CLIPS knowledge base,
; just using the pattern matching to create new knowledge.

; We have modified this to use salience measure to order
; rules (necessary for the spots --> allergy rule).

; A "Patient" may have values for fever, spots, rash, sore_throat
; and innoculated.

(deftemplate Patient
(slot fever)
(slot spots)
(slot rash)
(slot sore_throat)
(slot innoculated))

; Thes deftemplates represent conclusions which we may assign
; values to as a result of the inference.

(deftemplate Diagnosis
(slot diagnosis))



(deftemplate Treatment
(slot treatment))

; Rules for determining diagnosis on the basis of patient symptoms
; Salience added to give this rule priority

(defrule Measles
(declare (salience 100))
(Patient (fever high) (spots yes) (innoculated no))
=>
(assert (Diagnosis (diagnosis measles)))
(printout t "Measles diagnosed" crlf))

; Modified to only fire if no measles

(defrule Allergyl
(and (Patient (spots yes))
(not (Diagnosis (diagnosis measles))))
=>
(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from spots and lack of measles"
crlf))



(defrule Allergy2
(Patient (rash yes))
=>
(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from rash" crlf))

(defrule Flu
(Patient (sore_throat yes) (fever mild | high))
=>
(assert (Diagnosis (diagnosis flu)))
(printout t "Flu diagnosed" crlf))

; Rules for recommedaing treatments on the basis of
; Diagnosis facts created.

(defrule Penicillin
(Diagnosis (diagnosis measles))
=>
(assert (Treatment (treatment pennicillin)))
(printout t "Penicillin prescribed" crlf))

(defrule Allergy pills
(Diagnosis (diagnosis allergy))



=>
(assert (Treatment (treatment allergy shot)))
(printout t "Allergy shot prescribed" crlf))

(defrule Bed rest
(Diagnosis (diagnosis flu))
=>
(assert (Treatment (treatment bed rest)))
(printout t "Bed rest prescribed" crlf))

; Facts are created with deffacts (the can also
; be directly asserted while in CLIPS). The list
; consists of a name, and a list of facts.

(deffacts Symptoms
(Patient (fever high)
(spots yes)
(rash no)
(sore_throat no)
(innoculated no)))



3. Mpuknad 6a3u 3HaHb 3 6UKOPUCMAaHHSIM MOPI6HSIHHS 3a 3Pa3KoOM

; This is a very simple example of a CLIPS knowledge base,
; just using the pattern matching to create new knowledge.

; We have modified it to bind facts to patients with a given
; name (a new property of patient).

(deftemplate Patient
(slot name)
(slot fever)
(slot spots)
(slot rash)
(slot sore_throat)
(slot innoculated))

; Thes deftemplates represent conclusions which we may assign
; values to as a result of the inference.

(deftemplate Diagnosis
(slot name)

(slot diagnosis))

(deftemplate Treatment



(slot name)
(slot treatment))

; Rules for determining diagnosis on the basis of patient symptoms

; In the following, ?n is a variable, which gets "bound" to the value
; corresponding to the attribute (in this case the "name" attribute)
; in the matching fact. That value then gets used on the rest of the
; rule, including the assert and the printout.

(defrule Measles
(declare (salience 100))
(Patient (name ?n) (fever high) (spots yes) (innoculated no))

=>
(assert (Diagnosis (name ?n) (diagnosis measles)))
(printout t "Measles diagnosed for " ?n crlf))

; Modified to only fire if no measles

(defrule Allergyl
(and (Patient (name 7?n) (spots yes))
(not (Diagnosis (name ?n) (diagnosis measles))))
=>
(assert (Diagnosis (name 7?n) (diagnosis allergy)))



(printout t "Allergy diagnosed for " ?n " from spots and lack of
measles" crlf))

(defrule Allergy2
(Patient (name ?n) (rash yes))
=>
(assert (Diagnosis (name 7?n) (diagnosis allergy)))
(printout t "Allergy diagnosed from rash for" ?n crlf))

(defrule Flu
(Patient (name ?n) (sore_throat yes) (fever mild | high))
=>
(assert (Diagnosis (name 7?n) (diagnosis flu)))
(printout t "Flu diagnosed for " ?n crlf))

; Rules for recommedaing treatments on the basis of
; Diagnosis facts created.

(defrule Penicillin
(Diagnosis (name ?n) (diagnosis measles))
=>
(assert (Treatment (name ?n) (treatment penicillin)))
(printout t "Penicillin prescribed for " ?n crlf))



(defrule Allergy pills
(Diagnosis (name ?n) (diagnosis allergy))
=>
(assert (Treatment (name ?n) (treatment allergy_shot)))
(printout t "Allergy shot prescribed for " ?n crlf))

(defrule Bed rest
(Diagnosis (name ?n) (diagnosis flu))
=>
(assert (Treatment (name ?n) (treatment bed rest)))
(printout t "Bed rest prescribed for " ?n crlf))

; Facts are created with deffacts (the can also
; be directly asserted while in CLIPS). The list
; consists of a name, and a list of facts.

(deffacts Symptoms

(Patient (name "Fred")
(fever high)
(spots yes)
(rash no)
(sore_throat no)
(innoculated no))

(Patient (name "Barney")



(Patient

(fever mild)
(spots yes)

(rash no)
(sore_throat no)
(innoculated no))
(name "Wilma'")
(fever high)
(spots no)

(rash no)
(sore_throat yes)
(innoculated no)))



4. lMpuknad 6a3u 3HaHb 3 UKOPUCMAaHHAM YuUces/lbHUX eupa3sie

; This is a very simple example of a CLIPS knowledge base,
; just using the pattern matching to create new knowledge.

; We have modified this to use binding and arithmetic operations
; to conclude the level of fever from temperature.

; A "Patient" may have values for temperature,

sore_throat
; and innoculated.

(deftemplate Patient

(slot
(slot
(slot
(slot
(slot

temperature)
spots)

rash)
sore_throat)
innoculated))

spots, rash,



; Thes deftemplates represent conclusions which we may assign
; values to as a result of the inference.

(deftemplate Diagnosis
(slot diagnosis))

(deftemplate Treatment
(slot treatment))

; We add another template for fever, which is now a conclusion
; instead of a patient property

(deftemplate Fever
(slot level))

; Rules for concluding fever from temperature.



; Note that these rules find the patient temperature, and then bind
; it to ?t. The next part uses the test keyword to evaluate the
; conditional expression as true or false.

(defrule Feverl
(Patient (temperature ?t))
(test (>= ?t 101))
=>
(assert (Fever (level high)))
(printout t "High fever diagnosed" crlf))

(defrule Fever2
(Patient (temperature ?t))
(test (and (< ?t 101) (> ?t 98.6)))
=>
(assert (Fever (level mild)))
(printout t "Mild fever diagnosed" crlf))



; Rules for determining diagnosis on the basis of patient symptoms
; Salience added to give this rule priority

(defrule Measles
(declare (salience 100))
(Patient (spots yes) (innoculated no))
(Fever (level high))
=>
(assert (Diagnosis (diagnosis measles)))
(printout t "Measles diagnosed" crlf))

; Modified to only fire if no measles

(defrule Allergyl
(and (Patient (spots yes))
(not (Diagnosis (diagnosis measles))))
=>
(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from spots and lack of measles"
crlf))

(defrule Allergy2
(Patient (rash yes))
=>



(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from rash" crlf))

(defrule Flu
(Patient (sore_throat yes))
(Fever (level mild|high))
=>
(assert (Diagnosis (diagnosis flu)))
(printout t "Flu diagnosed" crlf))

; Rules for recommedaing treatments on the basis of
; Diagnosis facts created.

(defrule Penicillin
(Diagnosis (diagnosis measles))
=>
(assert (Treatment (treatment pennicillin)))
(printout t "Penicillin prescribed" crlf))

(defrule Allergy pills
(Diagnosis (diagnosis allergy))
=>
(assert (Treatment (treatment allergy shot)))
(printout t "Allergy shot prescribed" crlf))



(defrule Bed rest
(Diagnosis (diagnosis flu))
=>
(assert (Treatment (treatment bed rest)))
(printout t "Bed rest prescribed" crlf))

; Facts are created with deffacts (the can also
; be directly asserted while in CLIPS). The list
; consists of a name, and a list of facts.

(deffacts Symptoms
(Patient (temperature 99)
(spots no)
(rash no)
(sore_throat yes)
(innoculated no)))



5. Mpuknad 6a3u 3HaHb i3 86e0eHHsIM N08iOOMIIeHb

; This is a very simple example of a CLIPS knowledge base,
; just using the pattern matching to create new knowledge.

; We have modified this to use binding to prompt users for input.

; To simplify this, we will no longer use a single "Patient"
; object, but instead separate objects for each symptom (note
; that we will only perform inference on one patient at a time).

(deftemplate
(deftemplate
(deftemplate
(deftemplate
(deftemplate

Temperature (slot temperature))
Spots (slot spots))

Rash (slot rash))

SoreThroat (slot sore_throat))

Innoculated (slot innoculated))



; Thes deftemplates represent conclusions which we may assign
; values to as a result of the inference.

(deftemplate Diagnosis
(slot diagnosis))

(deftemplate Treatment
(slot treatment))

; We add another template for fever, which is now a conclusion
; instead of a patient property

(deftemplate Fever
(slot level))



; Our first rules will be used to gather symptoms from the user.
; Note that there are no conditions, which meand that they will
; always fire. The action is to print a prompt, bind the (read)
; to a variable, and then assert a new fact using that value.

(defrule GetTemperature
=>
(printout t "Enter patient temperature: ")
(bind ?response (read))
(assert (Temperature (temperature ?response))))

(defrule GetSpots
=>
(printout t "Does the patient have spots (yes or no): ")
(bind ?response (read))
(assert (Spots (spots ?response))))

(defrule GetRash
=>
(printout t "Does the patient have a rash (yes or no): ")
(bind ?response (read))
(assert (Rash (rash ?response))))

(defrule GetSoreThroat



=>

(printout t "Does the patient have a sore throat (yes or no): ")
(bind ?response (read))

(assert (SoreThroat (sore_throat ?response))))

; We can also ask for certain information only if necessary. For
example,

; it doesn't make sense to ask whether the patient has been
innoculated

; unless there is a possiblity of measles.

(defrule GetInnoculated

(Fever (level high))

(Spots (spots yes))

=>

(printout t "Has the patient been innoculated for measles (yes or
no): ")

(bind ?response (read))

(assert (Innoculated (innoculated ?response))))

; Rules for concluding fever from temperature.



; Note that these rules find the patient temperature, and then bind
; it to ?t. The next part uses the test keyword to evaluate the
; conditional expression as true or false.

(defrule Feverl
(Temperature (temperature ?t))
(test (>= ?t 101))
=>
(assert (Fever (level high)))
(printout t "High fever diagnosed" crlf))

(defrule Fever2
(Temperature (temperature ?t))
(test (and (< ?t 101) (> ?t 98.6)))
=>
(assert (Fever (level mild)))
(printout t "Mild fever diagnosed" crlf))



; Rules for determining diagnosis on the basis of patient symptoms
; Salience added to give this rule priority

(defrule Measles
(declare (salience 100))
(Spots (spots yes))
(Innoculated (innoculated no))
(Fever (level high))
=>
(assert (Diagnosis (diagnosis measles)))
(printout t "Measles diagnosed" crlf))

; Modified to only fire if no measles

(defrule Allergyl

(declare (salience -100))

(and (Spots (spots yes))

(not (Diagnosis (diagnosis measles))))

=>

(assert (Diagnosis (diagnosis allergy)))

(printout t "Allergy diagnosed from spots and lack of measles"
crlf))

(defrule Allergy2



(Rash (rash yes))

=>

(assert (Diagnosis (diagnosis allergy)))
(printout t "Allergy diagnosed from rash" crlf))

(defrule Flu
(SoreThroat (sore_throat yes))
(Fever (level mild|high))
=>
(assert (Diagnosis (diagnosis flu)))
(printout t "Flu diagnosed" crlf))



; Rules for recommedaing treatments on the basis of
; Diagnosis facts created.

(defrule Penicillin
(Diagnosis (diagnosis measles))
=>
(assert (Treatment (treatment pennicillin)))
(printout t "Penicillin prescribed" crlf))

(defrule Allergy pills
(Diagnosis (diagnosis allergy))
=>
(assert (Treatment (treatment allergy shot)))
(printout t "Allergy shot prescribed" crlf))

(defrule Bed rest
(Diagnosis (diagnosis flu))
=>
(assert (Treatment (treatment bed rest)))
(printout t "Bed rest prescribed" crlf))

; Facts are created with deffacts (the can also
; be directly asserted while in CLIPS). The list
; consists of a name, and a list of facts.



6. lMpuknad 6a3u 3HaHb 3 NPpocMuMu ¢hakmamu

’

This is a very simple example of a CLIPS knowledge base,
just using the pattern matching to create new knowledge.

We have modified this to use binding to prompt users for input.

To simplify this, we will no longer use a single "Patient"
object, but instead separate objects for each symptom (note
that we will only perform inference on one patient at a time).

TO simplify this even further, since there are no longer any
entities, we can just assert facts of the form (attribute value),
which means that we will no longer need the deftemplates.

Our first rules will be used to gather symptoms from the user.
Note that there are no conditions, which meand that they will

always fire. The action is to print a prompt, bind the (read)

to a variable, and then assert a new fact using that value.



(defrule GetTemperature
=>
(printout t "Enter patient temperature: ")
(bind ?response (read))
(assert (temperature ?response)))

(defrule GetSpots
=>
(printout t "Does the patient have spots (yes or no): ")
(bind ?response (read))
(assert (spots ?response)))

(defrule GetRash
=>
(printout t "Does the patient have a rash (yes or no): ")
(bind ?response (read))
(assert (rash ?response)))

(defrule GetSoreThroat
=>
(printout t "Does the patient have a sore throat (yes or no): ")
(bind ?response (read))
(assert (sore_throat ?response)))



; We can also ask for certain information only if necessary. For
example,

; it doesn't make sense to ask whether the patient has been
innoculated

; unless there is a possiblity of measles.

(defrule GetInnoculated

(fever high)

(spots yes)

=>

(printout t "Has the patient been innoculated for measles (yes or
no): ")

(bind ?response (read))

(assert (innoculated ?response)))

; Rules for concluding fever from temperature.

; Note that these rules find the patient temperature, and then bind
; it to ?t. The next part uses the test keyword to evaluate the
; conditional expression as true or false.

(defrule Feverl
(temperature ?t)
(test (>= ?t 101))



=>
(assert (fever high))
(printout t "High fever diagnosed" crlf))

(defrule Fever2
(temperature ?t)
(test (and (< ?t 101) (> ?t 98.6)))
=>
(assert (fever mild))
(printout t "Mild fever diagnosed" crlf))

; Rules for determining diagnosis on the basis of patient symptoms
; Salience added to give this rule priority

(defrule Measles
(declare (salience 100))
(spots yes)
(innoculated no)
(fever high)
=>
(assert (diagnosis measles))
(printout t "Measles diagnosed" crlf))

; Modified to only fire if no measles



(defrule Allergyl

(declare (salience -100))

(and (spots yes)

(not (diagnosis measles)))

=>

(assert (diagnosis allergy))

(printout t "Allergy diagnosed from spots and lack of measles"
crlf))

(defrule Allergy2
(rash yes)
=>
(assert (diagnosis allergy))
(printout t "Allergy diagnosed from rash" crlf))

(defrule Flu
(sore_throat yes)



	ІНТЕЛЕКТУАЛЬНІ ІНФОРМАЦІЙНІ СИСТЕМИ
	Лекція 3.
	Проектування простих баз знань
	1. Приклад простої бази знань
	2. База знань з використанням властивості salience
	3. Приклад бази знань з використанням порівняння за зразком
	4. Приклад бази знань з використанням чисельних виразів
	5. Приклад бази знань із введенням повідомлень
	6. Приклад бази знань з простими фактами


