METOOU | CUCTEMU LUTYHHOI O IHTEJNEKTY

3 Kypc, BecHa 2021

* [lo1n1. baksaH I.B.
. Email: iaa@ukr.net
* Web: baklaniv.at.ua

mailto:iaa@ukr.net
mailto:iaa@ukr.net
mailto:iaa@ukr.net
mailto:iaa@ukr.net

Jlexmia 16

Ipukiaaau 3a1a4 MITYYHOIO IHTEJIEKTY HA
CLIPS

[IporoHyeThCs CTyIeHTaM 03HAHOMHTHCS 3 TPUBEICHUMH TEKCTaMHU TIPOTpaM peaizarlii 3a1aq
mtyyHoro iHrenekry B cucreMi CLIPS Ta 3amyctuTi ix.

1. EKcnepTHa cucTteMHa nigdbopy BMHa Ao odiay

L excriepTHa crcTeMa BUOMpAE BIAMOBIIHE BUHO JUIA CIIOKMBAHHS M1 Yac ixkl.

I Wine Expert Sample Problem

HHH WINEX: The WINe EXpert system.

P This example selects an appropriate wine
N to drink with a meal.

P CLIPS Version 6.0 Example

HE To execute, merely load, reset and run.

(defmodule MAIN (export °?ALL))

;;****************

; ;* DEFFUNCTIONS *
;;****************

(deffunction MAIN: :ask-question (?question ?allowed-values)
(printout t ?question)
(bind ?answer (read))
(if (lexemep ?answer) then (bind ?answer (lowcase ?answer)))
(while (not (member 7?answer ?allowed-values)) do
(printout t ?question)
(bind ?answer (read))
(if (lexemep ?answer) then (bind ?answer (lowcase ?answer))))

?answer)

;;*****************

; ;* INITIAL STATE *
;;*****************

(deftemplate MAIN: :attribute
(slot name)
(slot value)
(slot certainty (default 100.0)))

(defrule MAIN: :start
(declare (salience 10000))
=>
(set-fact-duplication TRUE)
(focus QUESTIONS CHOOSE-QUALITIES WINES PRINT-RESULTS))

(defrule MAIN: :combine-certainties ""

(declare (salience 100)
(auto-focus TRUE))

?reml <- (attribute (name ?rel) (value ?val) (certainty ?perl))

?rem2 <- (attribute (name ?rel) (value ?val) (certainty ?per2))

(test (neq ?reml ?rem2))

=>

(retract ?reml)

(modify ?rem2 (certainty (/ (- (* 100 (+ ?perl °?per2)) (* ?perl ?per2))
100))))

;;******************

; ;* QUESTION RULES *
;;******************

(defmodule QUESTIONS (import MAIN ?ALL) (export °?ALL))

(deftemplate QUESTIONS: :question
(slot attribute (default ?NONE))
(slot the-question (default ?NONE))
(multislot valid-answers (default ?NONE))
(slot already-asked (default FALSE))
(multislot precursors (default ?DERIVE)))

(defrule QUESTIONS: :ask-a-question
?f <- (question (already-asked FALSE)
(precursors)

(the-question ?the-question)
(attribute ?the-attribute)
(valid-answers $?valid-answers))
=>
(modify ?f (already-asked TRUE))
(assert (attribute (name ?the-attribute)
(value (ask-question ?the-question ?valid-answers)))))

(defrule QUESTIONS: :precursor-is-satisfied
?f <- (question (already-asked FALSE)
(precursors ?name is ?value $?rest))
(attribute (name ?name) (value ?value))
=>
(if (eqg (nth 1 ?rest) and)
then (modify ?f (precursors (rest$?rest)))
else (modify ?f (precursors ?rest))))

(defrule QUESTIONS: :precursor-is-not-satisfied
?f <- (question (already-asked FALSE)
(precursors ?name is-not ?value $7?rest))
(attribute (name ?name) (value ~?value))
=>
(if (eqg (nth 1 ?rest) and)
then (modify ?f (precursors (rest$?rest)))
else (modify ?f (precursors ?rest))))

; ;*******************

;;* WINEX QUESTIONS *
53 kdok gk gk ok ok ok ok ok

(defmodule WINE-QUESTIONS (import QUESTIONS ?ALL))

(deffacts WINE-QUESTIONS: :question-attributes

(question
poultry? ")

(question

(question

(question

tomato? ")
(question

strong? ")

(attribute main-component)
(the-question "Is the main component of the meal meat, fish, or

(valid-answers meat fish poultry unknown))
(attribute has-turkey)

(precursors main-component is poultry)
(the-question "Does the meal have turkey in it? ")
(valid-answers yes no unknown))

(attribute has-sauce)

(the-question "Does the meal have a sauce on it? ")
(valid-answers yes no unknown))

(attribute sauce)

(precursors has-sauce is yes)

(the-question "Is the sauce for the meal spicy, sweet, cream, or

(valid-answers sauce spicy sweet cream tomato unknown))
(attribute tastiness)
(the-question "Is the flavor of the meal delicate, average, or

(valid-answers delicate average strong unknown))
(question (attribute preferred-body)
(the-question "Do you generally prefer light, medium, or full bodied
wines? ")
(valid-answers light medium full unknown))
(question (attribute preferred-color)
(the-question "Do you generally prefer red or white wines? ")
(valid-answers red white unknown))
(question (attribute preferred-sweetness)
(the-question "Do you generally prefer dry, medium, or sweet wines?
")

(valid-answers dry medium sweet unknown)))

;;******************

;; The RULES module
;;******************

(defmodule RULES (import MAIN ?ALL) (export ?ALL))

(deftemplate RULES: :rule
(slot certainty (default 100.0))
(multislot if)
(multislot then))

(defrule RULES: :throw-away-ands-in-antecedent
?f <- (rule (if and $7?rest))

=>
(modify ?f (if ?rest)))

(defrule RULES::throw-away-ands-in-consequent
?f <- (rule (then and $?rest))
=>
(modify ?f (then ?rest)))

(defrule RULES: :remove-is-condition-when-satisfied
?f <- (rule (certainty ?cl)
(if ?attribute is ?value $7?rest))
(attribute (name ?attribute)
(value ?value)
(certainty ?c2))
=>
(modify ?f (certainty (min ?cl ?c2)) (if ?rest)))

(defrule RULES: :remove-is-not-condition-when-satisfied
?f <- (rule (certainty ?cl)
(if ?attribute is-not ?value $?rest))
(attribute (name ?attribute) (value ~?value) (certainty ?c2))
=>
(modify ?f (certainty (min ?cl ?c2)) (if ?rest)))

(defrule RULES: :perform-rule-consequent-with-certainty
?f <- (rule (certainty °?cl)

(1£)
(then ?attribute is ?value with certainty ?c2 $?rest))
=>
(modify ?f (then ?rest))
(assert (attribute (name ?attribute)
(value ?value)
(certainty (/ (* ?cl 2c2) 100)))))

(defrule RULES: :perform-rule-consequent-without-certainty
?f <- (rule (certainty ?cl)
(1f)
(then ?attribute is ?value $?rest))
(test (or (eq (length$?rest) 0)
(neq (nth 1 ?rest) with)))
=>
(modify ?f (then ?rest))
(assert (attribute (name ?attribute) (value ?value) (certainty 7?cl))))

srkkkkkkhkkkkkhkkhkkhkdkkhkkhdkkhkhkhkkk
;;* CHOOSE WINE QUALITIES RULES ¥
srkkkkkkdkkkkdkkkkkdkkkkkdkkdkkkkdokk

(defmodule CHOOSE-QUALITIES (import RULES °?ALL)
(import QUESTIONS 7?ALL)

(import MAIN °?ALL))

10

(defrule CHOOSE-QUALITIES::startit => (focus RULES))

(deffacts the-wine-rules

11

; Rules for picking the best body

(rule

(rule

(rule

(rule

(rule

(if has-sauce is yes and
sauce is spicy)
(then best-body is full))

(if tastiness is delicate)
(then best-body is light))

(if tastiness is average)

(then best-body is light with certainty 30 and
best-body is medium with certainty 60 and
best-body is full with certainty 30))

(if tastiness is strong)
(then best-body is medium with certainty 40 and
best-body is full with certainty 80))

(if has-sauce is yes and
sauce is cream)
(then best-body is medium with certainty 40 and
best-body is full with certainty 60))

(rule

(rule

(rule

(rule

(rule

(rule

(if preferred-body is full)
(then best-body is full with certainty 40))

(if preferred-body is medium)
(then best-body is medium with certainty 40))

(if preferred-body is light)
(then best-body is light with certainty 40))

(if preferred-body is light and
best-body is full)
(then best-body is medium))

(if preferred-body is full and
best-body is light)
(then best-body is medium))

(if preferred-body is unknown)

(then best-body is light with certainty 20 and
best-body is medium with certainty 20 and
best-body is full with certainty 20))

; Rules for picking the best color

(rule

12

(if main-component is meat)

13

(rule

(rule

(rule

(rule

(rule

(rule

(then best-color is red with certainty 90))

(if main-component is poultry and
has-turkey is no)
(then best-color is white with certainty 90 and
best-color is red with certainty 30))

(if main-component is poultry and
has-turkey is yes)
(then best-color is red with certainty 80 and
best-color is white with certainty 50))

(if main-component is fish)
(then best-color is white))

(if main-component is-not fish and
has-sauce is yes and
sauce is tomato)

(then best-color is red))

(if has-sauce is yes and
sauce is cream)
(then best-color is white with certainty 40))

(if preferred-color is red)
(then best-color is red with certainty 40))

14

(rule

(rule

(if preferred-color is white)
(then best-color is white with certainty 40))

(if preferred-color is unknown)
(then best-color is red with certainty 20 and
best-color is white with certainty 20))

; Rules for picking the best sweetness

(rule

(rule

(rule

(rule

(rule

(if has-sauce is yes and

sauce is sweet)
(then best-sweetness is
best-sweetness is

(if preferred-sweetness
(then best-sweetness is

(if preferred-sweetness
(then best-sweetness is

(if preferred-sweetness
(then best-sweetness is

sweet with certainty 90 and
medium with certainty 40))

is dry)
dry with certainty 40))

is medium)
medium with certainty 40))

is sweet)
sweet with certainty 40))

(if best-sweetness is sweet and

preferred-sweetness

is dry)

(then best-sweetness is medium))

(rule (if best-sweetness is dry and
preferred-sweetness is sweet)
(then best-sweetness is medium))

(rule (if preferred-sweetness is unknown)
(then best-sweetness is dry with certainty 20 and
best-sweetness is medium with certainty 20 and
best-sweetness is sweet with certainty 20))

; ,-************************

;;* WINE SELECTION RULES *
5 5 Fekdokdook ok ok ok ok ok ok o ok ok ok ok

(defmodule WINES (import MAIN 2?ALL))

(deffacts any-attributes
(attribute (name best-color) (value any))
(attribute (name best-body) (value any))
(attribute (name best-sweetness) (value any)))

(deftemplate WINES: :wine
(slot name (default ?NONE))

15

(multislot color (default any))
(multislot body (default any))
(multislot sweetness (default any)))

(deffacts WINES: :the-wine-list

(wine (name Gamay) (color red) (body medium) (sweetness medium sweet))

(wine (name Chablis) (color white) (body light) (sweetness dry))

(wine (name Sauvignon-Blanc) (color white) (body medium) (sweetness dry))

(wine (name Chardonnay) (color white) (body medium full) (sweetness medium
dry))

(wine (name Soave) (color white) (body light) (sweetness medium dry))

(wine (name Riesling) (color white) (body light medium) (sweetness medium
sweet))

(wine (name Geverztraminer) (color white) (body full))

(wine (name Chenin-Blanc) (color white) (body light) (sweetness medium sweet))

(wine (name Valpolicella) (color red) (body light))

(wine (name Cabernet-Sauvignon) (color red) (sweetness dry medium))

(wine (name Zinfandel) (color red) (sweetness dry medium))

(wine (name Pinot-Noir) (color red) (body medium) (sweetness medium))

(wine (name Burgundy) (color red) (body full))

(wine (name Zinfandel) (color red) (sweetness dry medium)))

(defrule WINES: :generate-wines
(wine (name ?name)
(color $? ?c $?)
(body $? ?b $?)

16

(sweetness $? ?s $?))
(attribute (name best-color) (value ?c) (certainty ?certainty-1))
(attribute (name best-body) (value ?b) (certainty ?certainty-2))
(attribute (name best-sweetness) (value ?s) (certainty ?certainty-3))
=>
(assert (attribute (name wine) (value ?name)
(certainty (min ?certainty-1 ?certainty-2 ?certainty-3)))))

; ;*****************************

;;* PRINT SELECTED WINE RULES *
prkkkkdokdkdkkdkkkkkkkhkhkdokdokdokkok

(defmodule PRINT-RESULTS (import MAIN ?ALL))

(defrule PRINT-RESULTS: :header ""
(declare (salience 10))

=>

(printout t t)

(printout t " SELECTED WINES" t t)
(printout t " WINE CERTAINTY" t)
(printout t " ------—-—-—-—— - " t)

(assert (phase print-wines)))
(defrule PRINT-RESULTS: :print-wine ""

?rem <- (attribute (name wine) (value ?name) (certainty ?per))
(not (attribute (name wine) (certainty ?perlé&: (> ?perl 7?per))))

17

=>
(retract ?rem)
(format t " %-24s %2d%%%n" ?name ?per))

(defrule PRINT-RESULTS: :remove-poor-wine-choices ""
?rem <- (attribute (name wine) (certainty ?peré&: (< ?per 20)))
=>
(retract ?rem))

(defrule PRINT-RESULTS: :end-spaces ""
(not (attribute (name wine)))
=>
(printout t t))

18

2. MaBnu Ta baHaHu

Lle po3mmpena Bepcis 1ocuTh nomupeHoi npodiaemu rianyBanss 111, Cnpasa B Tomy, 1100 MaBmia
3Ha#IA 1 3’i7a TpoXu OaHaHIB .

Ilpo6nema magnu i banana — nipodaemMa y rajnysi MITy9HOTO IHTETIEKTY, OCOOJIMBO B JIOTIYHOMY
IporpaMyBaHHI Ta IJIAHYBaHHI, SIKa BIAHOCUTHCS J10 3a]1a4 NOULyKy 8 npocmopi cmauie. BoHna yacto
BUKOPHUCTOBYETHCS ISl LUTFOCTpAIlli 3a1a4 MOJICIIOBAHHS MOBEAIHKM 00'e€KTiB. Ynepiue 3agada Oyna
3anporonoBana J[>x. Makkapti B 1963 porii.

Ilocmanoska 3a0aui: Magria nepeOyBae B KIMHATI, B K1l MiJBIIIEHA J0 CTeN1 Kyna OaHaHiB,
HeZ0CsoKHA Tt MaBnu. OHaK y KIMHATI € TaKOXK cTUIenp 1 nanuit. Ctens Mae moTpiOHy BUCOTY,
o0 MaBIa, sika CTOsUIa Ha CTUIBII, MOTJIa 30MTH naiauieto 6aHaHu. MaBia BMi€ IepecyBaTHcCH,
HOCHUTH 3 cOOOI0 1HIII pedi, TATHYTHCS 10 OaHaHIB 1 MaXaTy NAJIXLEIO B MOBITPi. SIka HaliKkpaIia

[IOCJIIJIOBHICTD Jiil I MaBIA?

19

Po3zs’sazanns npobremu: MaBru MaroTh 34aTHICTh HE TUIBKU ITaM'sITaTH, SK TIOJIFOBATH 1 30MpaTH, aje
1l yUUTHUCS HOBUX peUeH, SK 11e BII0YBAETHCS 3 MABIOO Ta OaHAHAMMU: HE3BAKAIOUHU HA T€, 1110

MaBIla, MOKJIMBO, HIKOJIM HE MOTpaIuislia B 1IEHTUYHY CUTyalit0. MaBna 31aTHa 3p0OUTH BUCHOBOK,
110 il MOTPiOHO 3pOOUTH CXOJIU, PO3TAINTYBATH iX HIDKUE OaHAHIB 1 MITHATUCS, III00 JOTATHYTHCS 10

HHX.

P Monkees and Bananas Sample Problem
P This is an extended version of a
i rather common AI planning problem.

H The point is for the monkee to find
P and eat some bananas.

Y CLIPS Version 6.0 Example

I To execute, merely load, reset and run.

;;*************

;;:;* TEMPLATES *
;;*************

20

(deftemplate monkey
(slot location
(type SYMBOL)
(default green-couch))
(slot on-top-of
(type SYMBOL)
(default floor))
(slot holding
(type SYMBOL)
(default blank)))

(deftemplate thing
(slot name
(type SYMBOL)
(default ?NONE))
(slot location
(type SYMBOL)
(default ?NONE))
(slot on-top-of
(type SYMBOL)
(default floor))
(slot weight
(type SYMBOL)
(allowed-symbols light heavy)
(default 1light)))

21

(deftemplate chest
(slot name
(type SYMBOL)
(default ?NONE))
(slot contents
(type SYMBOL)
(default ?NONE))
(slot unlocked-by
(type SYMBOL)
(default ?NONE)))

(deftemplate goal-is-to

(slot action
(type SYMBOL)
(2allowed-symbols hold unlock eat move on walk-to)
(default ?NONE))

(multislot arguments
(type SYMBOL)
(default ?NONE)))

sakkkkkkkkkkkhkkkkkdkkhkkhkkkk
;;:;* CHEST UNLOCKING RULES *
srkkkkdkkkkkkkdkkkkkdkkkkkdokkk

(defrule hold-chest-to-put-on-floor ""

22

(goal-is-to (action unlock) (arguments ?chest))

(thing (name ?chest) (on-top-of ~floor) (weight 1light))
(monkey (holding ~7?chest))

(not (goal-is-to (action hold) (arguments ?chest)))

=>

(assert (goal-is-to (action hold) (arguments ?chest))))

(defrule put-chest-on-floor ""
(goal-is-to (action unlock) (arguments ?chest))
?monkey <- (monkey (location ?place) (on-top-of ?on) (holding ?chest))
?thing <- (thing (name Z?chest))
=>
(printout t "Monkey throws the " ?chest " off the "
?on " onto the floor." crlf)
(modify ?monkey (holding blank))
(modify ?thing (location ?place) (on-top-of floor)))

(defrule get-key-to-unlock ""
(goal-is-to (action unlock) (arguments ?obj))
(thing (name ?obj) (on-top-of floor))
(chest (name ?0bj) (unlocked-by Z?key))
(monkey (holding ~?key))
(not (goal-is-to (action hold) (arguments Z?key)))
=>
(assert (goal-is-to (action hold) (arguments ?key))))

23

(defrule move-to-chest-with-key ""
(goal-is-to (action unlock) (arguments Z?chest))
(monkey (location ?mplace) (holding ?key))
(thing (name ?chest) (location ?cplace&~?mplace) (on-top-of floor))
(chest (name ?chest) (unlocked-by ?key))
(not (goal-is-to (action walk-to) (arguments ?cplace)))
=>
(assert (goal-is-to (action walk-to) (arguments ?cplace))))

(defrule unlock-chest-with-key ""
?goal <- (goal-is-to (action unlock) (arguments ?name))
?chest <- (chest (name ?name) (contents 7?contents) (unlocked-by Z?key))
(thing (name ?name) (location ?place) (on-top-of ?on))
(monkey (location ?place) (on-top-of ?on) (holding ?key))
=>
(printout t "Monkey opens the " ?name " with the " ?key
" revealing the " ?contents "." crlf)
(modify 7?chest (contents nothing))
(assert (thing (name ?contents) (location ?place) (on-top-of ?name)))
(retract ?goal))

H ;*********************

;;:;* HOLD OBJECT RULES ¥*
s pkkkkkkkkhkkkkkkkkkkkkk

(defrule unlock-chest-to-hold-object ""

24

(goal-is-to (action hold) (arguments ?obj))

(chest (name ?chest) (contents ?0bj))

(not (goal-is-to (action unlock) (arguments Z?chest)))

=>

(assert (goal-is-to (action unlock) (arguments ?chest))))

(defrule use-ladder-to-hold ""
(goal-is-to (action hold) (arguments ?obj))
(thing (name ?0bj) (location ?place) (on-top-of ceiling)
(not (thing (name ladder) (location ?place)))

(weight 1light))

(not (goal-is-to (action move) (arguments ladder ?place)))

=>

(assert (goal-is-to (action move) (arguments ladder ?place))))

(defrule climb-ladder-to-hold ""
(goal-is-to (action hold) (arguments ?obj))
(thing (name ?obj) (location ?place) (on-top-of ceiling)
(thing (name ladder) (location 7?place) (on-top-of floor))
(monkey (on-top-of ~ladder))
(not (goal-is-to (action on) (arguments ladder)))
=>
(assert (goal-is-to (action on) (arguments ladder))))

(defrule grab-object-from-ladder ""

?goal <- (goal-is-to (action hold) (arguments ?name))
?thing <- (thing (name ?name) (location ?place)

25

(weight light))

(on-top-of ceiling) (weight light))
(thing (name ladder) (location ?place))
?monkey <- (monkey (location 7?place) (on-top-of ladder) (holding blank))
=>
(printout t "Monkey grabs the " ?name "." crlf)
(modify ?thing (location held) (on-top-of held))
(modify ?monkey (holding ?name))
(retract ?goal))

(defrule climb-to-hold ""
(goal-is-to (action hold) (arguments ?obj))
(thing (name ?0bj) (location ?place) (on-top-of ?on&~ceiling) (weight light))
(monkey (location ?place) (on-top-of ~?on))
(not (goal-is-to (action on) (arguments ?on)))
=>
(assert (goal-is-to (action on) (arguments ?on))))

(defrule walk-to-hold ""
(goal-is-to (action hold) (arguments ?obj))
(thing (name ?obj) (location ?place) (on-top-of ~ceiling) (weight light))
(monkey (location ~%?place))
(not (goal-is-to (action walk-to) (arguments ?place)))
=>
(assert (goal-is-to (action walk-to) (arguments ?place))))

(defrule drop-to-hold ""

26

(goal-is-to (action hold) (arguments ?obj))

(thing (name ?obj) (location ?place) (on-top-of ?on) (weight light))
(monkey (location 7?place) (on-top-of ?on) (holding ~blank))

(not (goal-is-to (action hold) (arguments blank)))

=>

(assert (goal-is-to (action hold) (arguments blank))))

(defrule grab-object ""
?goal <- (goal-is-to (action hold) (arguments ?name))
?thing <- (thing (name ?name) (location ?place)
(on-top-of ?on) (weight light))
?monkey <- (monkey (location 7?place) (on-top-of ?on) (holding blank))
=>
(printout t "Monkey grabs the " ?name "." crlf)
(modify ?thing (location held) (on-top-of held))
(modify ?monkey (holding ?name))
(retract ?goal))

(defrule drop-object ""
?goal <- (goal-is-to (action hold) (arguments blank))
?monkey <- (monkey (location ?place)
(on-top-of ?on)
(holding ?nameé&~blank))
?thing <- (thing (name %?name))
=>
(printout t "Monkey drops the " ?name "." crlf)

27

(modify ?monkey (holding blank))
(modify ?thing (location ?place) (on-top-of ?on))
(retract 7?goal))

HH ;*********************

;;:;* MOVE OBJECT RULES *
s pkdokdokddkdkdkdk ko kok ok ok ok ok

(defrule unlock-chest-to-move-object ""
(goal-is-to (action move) (arguments ?obj ?))
(chest (name ?chest) (contents ?0bj))
(not (goal-is-to (action unlock) (arguments Z?chest)))
=>
(assert (goal-is-to (action unlock) (arguments ?chest))))

(defrule hold-object-to-move ""
(goal-is-to (action move) (arguments ?obj ?place))
(thing (name ?0bj) (location ~7?place) (weight light))
(monkey (holding ~?obj))
(not (goal-is-to (action hold) (arguments ?obj)))
=>
(assert (goal-is-to (action hold) (arguments ?0bj))))

(defrule move-object-to-place ""

(goal-is-to (action move) (arguments ?obj ?place))
(monkey (location ~?place) (holding ?obj))

28

(not (goal-is-to (action walk-to) (arguments ?place)))
=>
(assert (goal-is-to (action walk-to) (arguments ?place))))

(defrule drop-object-once-moved ""
?goal <- (goal-is-to (action move) (arguments ?name ?place))
?monkey <- (monkey (location ?place) (holding 7?obj))
?thing <- (thing (name ?name) (weight light))
=>
(printout t "Monkey drops the " ?name "." crlf)
(modify ?monkey (holding blank))

(modify ?thing (location ?place) (on-top-of floor))
(retract ?goal))

(defrule already-moved-object ""
?goal <- (goal-is-to (action move) (arguments ?obj ?place))
(thing (name ?o0bj) (location ?place))
=>
(retract ?goal))

H ;***********************

;7;:;* WALK TO PLACE RULES *
s pkRokdokdokdkdkdkkkokkokkokkokdok ok

(defrule already-at-place ""
?goal <- (goal-is-to (action walk-to) (arguments ?place))

29

(monkey (location ?place))
=>
(retract 7?goal))

(defrule get-on-floor-to-walk ""
(goal-is-to (action walk-to) (arguments 7?place))
(monkey (location ~?place) (on-top-of ~floor))
(not (goal-is-to (action on) (arguments floor)))
=>
(assert (goal-is-to (action on) (arguments floor))))

(defrule walk-holding-nothing ""
?goal <- (goal-is-to (action walk-to) (arguments ?place))
?monkey <- (monkey (location ~?place) (on-top-of floor) (holding blank))
=>
(printout t "Monkey walks to " ?place "." crlf)
(modify ?monkey (location ?place))
(retract 7?goal))

(defrule walk-holding-object ""
?goal <- (goal-is-to (action walk-to) (arguments Z?place))
?monkey <- (monkey (location ~?place) (on-top-of floor) (holding ?objé&~blank))
=>
(printout t "Monkey walks to " ?place " holding the " Z?obj "." crlf)
(modify ?monkey (location ?place))
(retract ?goal))

30

HH ;***********************

;;:;* GET ON OBJECT RULES *
s pkkkkkkkkkdkdokdok ko okkok ok ok ok ok

(defrule jump-onto-floor ""
?goal <- (goal-is-to (action on) (arguments floor))
?monkey <- (monkey (on-top-of ?oné&~floor))
=>
(printout t "Monkey jumps off the " ?on " onto the floor." crlf)
(modify ?monkey (on-top-of floor))
(retract 7?goal))

(defrule walk-to-place-to-climb ""
(goal-is-to (action on) (arguments ?obj))
(thing (name ?o0bj) (location ?place))
(monkey (location ~7?place))
(not (goal-is-to (action walk-to) (arguments ?place)))
=>
(assert (goal-is-to (action walk-to) (arguments ?place))))

(defrule drop-to-climb ""
(goal-is-to (action on) (arguments ?obj))
(thing (name ?o0bj) (location %?place))
(monkey (location ?place) (holding ~blank))
(not (goal-is-to (action hold) (arguments blank)))

31

=>
(assert (goal-is-to (action hold) (arguments blank))))

(defrule climb-indirectly ""
(goal-is-to (action on) (arguments ?obj))
(thing (name ?0bj) (location ?place) (on-top-of ?on))
(monkey (location ?place) (on-top-of ~?on&~?obj) (holding blank))
(not (goal-is-to (action on) (arguments ?on)))
=>
(assert (goal-is-to (action on) (arguments ?on))))

(defrule climb-directly ""
?goal <- (goal-is-to (action on) (arguments ?obj))
(thing (name ?obj) (location ?place) (on-top-of ?on))
?monkey <- (monkey (location 7?place) (on-top-of ?on) (holding blank))
=>
(printout t "Monkey climbs onto the " ?obj "." crlf)
(modify ?monkey (on-top-of ?0bj))
(retract ?goal))

(defrule already-on-object ""
?goal <- (goal-is-to (action on) (arguments ?obj))
(monkey (on-top-of ?0bj))
=>
(retract ?goal))

32

,;;********************

;;:* EAT OBJECT RULES *
s pkRkkkkkkdokokkokkokkok ok kk

(defrule hold-to-eat ""

(goal-is-to (action eat) (arguments ?obj))
(monkey (holding ~?o0bj))

(not (goal-is-to (action hold) (arguments ?obj)))
=>

(assert (goal-is-to (action hold) (arguments ?0bj))))

(defrule satisfy-hunger ""
?goal <- (goal-is-to (action eat) (arguments ?name))
?monkey <- (monkey (holding ?name))
?thing <- (thing (name %?name))
=>
(printout t "Monkey eats the " ?name "." crlf)
(modify ?monkey (holding blank))
(retract ?goal ?thing))

,;;**********************

;;:;* INITIAL STATE RULE ¥
s pkkkdokkkkkkkkkkkkkkkkhok

(defrule startup ""
=>

33

34

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(monkey (location t5-7) (on-top-of green-couch) (holding blank)))

(thing
(thing
(thing
(thing
(chest
(thing
(chest
(thing
(thing
(chest
(thing

(name
(name
(name
(name
(name
(name
(name
(name
(name
(name
(name

green-couch) (location t5-7) (weight heavy)))
red-couch) (location t2-2) (weight heavy)))

big-pillow) (location t2-2) (on-top-of red-couch)))
red-chest) (location t2-2) (on-top-of big-pillow)))
red-chest) (contents ladder) (unlocked-by red-key)))
blue-chest) (location t7-7) (on-top-of ceiling)))
blue-chest) (contents bananas) (unlocked-by blue-key)))
blue-couch) (location t8-8) (weight heavy)))
green-chest) (location t8-8) (on-top-of ceiling)))
green-chest) (contents blue-key) (unlocked-by red-key)))
red-key) (location t1-3)))

(goal-is-to (action eat) (arguments bananas))))

3. KaHibanu Ta mecioHepwu

3aava mpo MICIOHEPIB 1 KaH10aiB, 1 TICHO MOB'A3aHa 3 HUMU 33/1a4a PO PEBHUBOI'O YOJIOBIKa,
KJIACHYHI PUKJIAAM «337a4 Mpo MepeTHH piukmy». Llg 3amqaua — irpamkosa mpodiieMa B raiysi
LITYYHOT'O IHTEJIEKTY, i€ BOHa OyJia BuKopucTtana CaynoM AmapeseMm K Npukiag npodieMu NogaHHS.

VY wmicionepig i kanibanie € mpobdiieMa: TPOE MICIOHEPIB 1 TPOE KaH10aJIB MOBUHHI MEPETHYTH PIUKY
3a JIOTIOMOT'0F0 YOBHA, 1110 3/1aT€H HECTH He OLIbIe ABOX 0cCi0, Mpu 0OMeKeHHI, 110 Ha Oepe3l He
MOKe 3aJIMIIaTUCs O1IbIle KaHi10aJiB, HiXK MICIOHEpiB (K10 BOHU O Oyiu, KaHi6anu 3'inu 6
MicioHepiB.) Takok YOBHM HE MOXKYTh IIEPETHYTH PIUKy MO c001, 6€3 Jroiel Ha 0opTY.

3aoaua pesnusozo uonosixa. 3amicTh MICIOHEPIB 1 KaH10aJIIB € TPOE OJIPYKEHUX Tap, 3
0OMEKEHHSIM, 110 >KOHA JKIHKA HE MOKe OyTH B MPUCYTHOCTI 1HIIIOT JIFOAMHH, SKIIO ii YOJIOBIK
TaKOXX MPHUCYTHIN. BiAMOBIIHO 10 IbOrO OOMEXKEHHSI, HE MOK€ OyTH YOJIOBIKHM 1 XKIHKU IPUCYTHI HA
Oepesi 3 mepeBakarouMMU KIHOK YOJIOBIKaMHU, TOMY IO AKIIO O BOHU Oynu, AesKi)KiHKH Oyin 6
NOKMHYTUMU. TakuM YMHOM, [IPU 3MIHI YOJIOBIKIB JIIOJI0KEPAMHU 1 XKIHOK MICIOHEpaMHU, Oyb-sIKe
pllieHHs! TpOoOJIeMH PEBHUBOIO YOJIOBIKA TAKOX CTaHE PIIIEHHA 3a/1a4l MICIOHEPIB 1 KaH10aJIiB.

35

B namomy npukinani knacuana npoosiema LI “kanibanu ta MicioHepu” MPONOHYETHCS Y
ciibecbKorocnoaapcrbkomy miati. CeHe y Tomy, mo0 nepese3tu pepmepa, aucuiito (1Ho i BOBKA),
KaIlyCTy Ta KO3y 4epe3 piuKy. AJie YOBEH BMIILY€E JIHIIE 2 MicCIs. SKILIO JIMIIUTUCA HAOAUHII 3
KO3010, JIUCHUIISA ii 3’ICTh. SIKIO 3aTUITUTUCS HAOIMHIII 3 KallyCTO0, K034 11 3’iCTh.

Ll mpukiag BUKOPUCTOBYE IpaBuiia Ta 301r 3pa3KiB (PAKTIB sl BUPILICHHS MPOOJIEMH.

.
rr

H Farmer's Dilemma Problem

i Another classic AI problem (cannibals and the
P missionary) in agricultural terms. The point is
H to get the farmer, the fox the cabbage and the
P goat across a stream.

b But the boat only holds 2 items. If left

Y alone with the goat, the fox will eat it. If
i left alone with the cabbage, the goat will eat
rr it.

H This example uses rules and fact pattern

;i matching to solve the problem.

H CLIPS Version 6.0 Example

Y To execute, merely load, reset and run.

(defmodule MAIN
(export deftemplate status))

,;;*************

;;;* TEMPLATES ¥*
;rkkkkkkhkkhkkhk

;:; The status facts hold the state
;;; information of the search tree.

(deftemplate MAIN: :status
(slot search-depth (type INTEGER) (range 1 ?VARIABLE))
(slot parent (type FACT-ADDRESS SYMBOL) (allowed-symbols no-parent))
(slot farmer-location
(type SYMBOL) (allowed-symbols shore-1 shore-2))
(slot fox-location
(type SYMBOL) (allowed-symbols shore-1 shore-2))
(slot goat-location
(type SYMBOL) (allowed-symbols shore-1 shore-2))
(slot cabbage-location
(type SYMBOL) (allowed-symbols shore-1 shore-2))
(slot last-move
(type SYMBOL) (allowed-symbols no-move alone fox goat cabbage)))

,;;*****************

37

;;:* INITIAL STATE *
s opkRokdokdkkkkkokkokkokk

(deffacts MAIN::initial-positions
(status (search-depth 1)

(parent no-parent)
(farmer-location shore-1)
(fox-location shore-1)
(goat-location shore-1)
(cabbage-location shore-1)
(last-move no-move)))

(deffacts MAIN: :opposites
(opposite-of shore-1 shore-2)
(opposite-of shore-2 shore-1))

HH ;***********************

;;;* GENERATE PATH RULES *
s kkkkkkokkkdkdokdok ko kkok ok ok ok ok

(defrule MAIN: :move-alone
?node <- (status (search-depth ?num)
(farmer-location ?fs))
(opposite-of ?fs ?ns)
=>
(duplicate ?node (search-depth =(+ 1 ?num))

38

(parent 7?node)
(farmer-location ?ns)
(last-move alone)))

(defrule MAIN: :move-with-fox

?node <- (status (search-depth ?num)
(farmer-location ?fs)
(fox-location ?fs))

(opposite-of ?fs ?ns)

=>

(duplicate ?node (search-depth =(+ 1 ?num))
(parent ?node)
(farmer-location ?ns)
(fox-location ?ns)
(last-move fox)))

(defrule MAIN: :move-with-goat

?node <- (status (search-depth ?num)
(farmer-location ?fs)
(goat-location ?fs))

(opposite-of ?fs ?ns)

=>

(duplicate ?node (search-depth =(+ 1 ?num))
(parent ?node)
(farmer-location ?ns)
(goat-location ?ns)

39

(last-move goat)))

(defrule MAIN: :move-with-cabbage
?node <- (status (search-depth ?num)
(farmer-location ?f£fs)
(cabbage-location ?fs))
(opposite-of ?fs ?ns)
=>

(duplicate ?node (search-depth =(+ 1 ?num))

(parent 7?node)
(farmer-location ?ns)
(cabbage-location ?ns)
(last-move cabbage)))

H ;******************************

;7 ;% CONSTRAINT VIOLATION RULES ¥*
s pkRokdokdkkdkkkkkkkdokdokdokdokdkokkokkokkk

(defmodule CONSTRAINTS
(import MAIN deftemplate status))

(defrule CONSTRAINTS: :fox-eats—-goat
(declare (auto-focus TRUE))
?node <- (status (farmer-location ?sl)
(fox-location ?s2&~7?sl)
(goat-location 7?s2))

40

=>
(retract ?node))

(defrule CONSTRAINTS: :goat-eats-cabbage
(declare (auto-focus TRUE))
?node <- (status (farmer-location ?sl)
(goat-location ?s2&~7?sl)
(cabbage-location ?s2))
=>
(retract ?node))

(defrule CONSTRAINTS: :circular-path

(declare (auto-focus TRUE))

(status (search-depth ?sdl)
(farmer-location ?fs)
(fox-location ?xs)
(goat-location ?gs)
(cabbage-location ?cs))

?node <- (status (search-depth ?sd2&: (< ?sdl ?sd2))

(farmer-location ?f£fs)

(fox-location ?xs)

(goat-location ?gs)

(cabbage-location ?cs))
=>

(retract ?node))

41

H ,-*********************************

;;:* FIND AND PRINT SOLUTION RULES *
s pRkkkkdokdkokdokdokkdkok koo dok ko kok ok ok ok

(defmodule SOLUTION
(import MAIN deftemplate status))

(deftemplate SOLUTION: :moves
(slot id (type FACT-ADDRESS SYMBOL) (allowed-symbols no-parent))
(multislot moves-list
(type SYMBOL) (allowed-symbols no-move alone fox goat cabbage)))

(defrule SOLUTION: :recognize-solution

(declare (auto-focus TRUE))

?node <- (status (parent ?parent)
(farmer-location shore-2)
(fox-location shore-2)
(goat-location shore-2)
(cabbage-location shore-2)
(last-move ?move))

=>

(retract ?node)

(assert (moves (id ?parent) (moves-list ?move))))

(defrule SOLUTION: : further-solution
?node <- (status (parent ?parent)

42

(last-move ?move))
?mv <- (moves (id ?node) (moves-list $?rest))
=>
(modify ?mv (id ?parent) (moves-list ?move ?rest)))

(defrule SOLUTION: :print-solution

?mv <- (moves (id no-parent) (moves-list no-move $?m))
=>
(retract ?mv)
(printout t crlf "Solution found: " crlf crlf)
(bind ?length (length ?m))
(bind ?i 1)
(bind ?shore shore-2)
(while (<= ?i ?length)

(bind ?thing (nth ?i ?m))

(if (eq ?thing alone)

then (printout t "Farmer moves alone to " ?shore "." crlf)

else (printout t "Farmer moves with " ?thing " to " ?shore "." crlf))

(if (eq ?shore shore-1)
then (bind ?shore shore-2)
else (bind ?shore shore-1))
(bind ?1i (+ 1 ?i))))

43

O4eBHIHUM y3araJbHEHHSIM € 3MiHa YUCJia PeBHUBHX Map (a00 MICIOHEpiB 1 KaH10aJIiB), MICTKICTh
cynHa, abo 000X mapamMeTpiB. SIKII0 YOBEH BMIIIye 2 0ci0, TO 2 mapu BUMAraroTh 5 MOi3/I0K, Bix 4 abo
OLIbIIIE Map, 3aBJJaHHS HE MA€ PIILICHHS.

SIKI110 YOBEH MOX€e BMICTHTH 3 YOJIOBIK, TO MOKE TIEPEBE3TH /IO 5 mMap, SKIIO YOBEH MOXKE MiCTUTH 4-X
0ci0, TO MOXIJIMBO MEePEBE3TH OyAb-AKY KUIbKICTh Map.

k110 B cepenHi piuKy JOJIATH OCTPIB, TO MOTIM OyAb-SIKE YHUCIIO Map MOXKE NIEPETHYTH PIUKY 3a
JIOTIOMOTOFO JTBOX YOJIOBIK.

44

Y HaCTynHiu JeKIjii MU 03HAMOMHUMCS 3i CK/IQJHUM MPUKJ/IaJ0M
CTBOpeHHA eKcnepTHOI cucremu B CLIPS.

45

	Пропонується студентам ознайомитися з приведеними текстами програм реалізацій задач штучного інтелекту в системі CLIPS та запустити їх.
	1. Експертна системна підбору вина до обіду

