
Object 1 МЕТОДИ І СИСТЕМИ ШТУЧНОГО ІНТЕЛЕКТУ

 3 курс, весна 2021

• Доц. Баклан І.В.
• Email: i aa @ ukr.net
• Web: baklaniv.at.ua

1

mailto:iaa@ukr.net
mailto:iaa@ukr.net
mailto:iaa@ukr.net
mailto:iaa@ukr.net

Лекція 17

Приклад складної експертної системи та
бази знань на CLIPS

2

Пропонується студентам ознайомитися з приведеними текстами програм реалізації експертної
системи на основі бази знань в CLIPS та запустити їх.

Нижче приведена експертна система, яка намагається ідентифікувати тварину на основі її
характеристик. База знань у цьому прикладі - це сукупність фактів, що представляють правила
зворотного ланцюга. Потім правила прямого ланцюжка CLIPS використовуються для імітації
механізму зворотного виведення ланцюгів назад.

;;;==
;;; Animal Identification Expert System
;;;
;;; A simple expert system which attempts to identify
;;; an animal based on its characteristics.
;;; The knowledge base in this example is a
;;; collection of facts which represent backward
;;; chaining rules. CLIPS forward chaining rules are
;;; then used to simulate a backward chaining inference
;;; engine.
;;;
;;; CLIPS Version 6.3 Example
;;;
;;; To execute, merely load, reset, and run.

3

;;; Answer questions yes or no.
;;;==

(defmodule MAIN (export ?ALL))

(defmodule VALIDATE (import MAIN ?ALL))

(defmodule CHAIN (import MAIN ?ALL))

(defmodule ASK (import MAIN ?ALL))

;;;*************************
;;;* DEFGLOBAL DEFINITIONS *
;;;*************************

(defglobal MAIN
 ?*rule-index* = 1
 ?*validate* = TRUE)

;;;***************************
;;;* DEFFUNCTION DEFINITIONS *
;;;***************************

4

(deffunction generate-rule-name ()
 (bind ?name (sym-cat rule- ?*rule-index*))
 (bind ?*rule-index* (+ ?*rule-index* 1))
 (return ?name))

;;;***************************
;;;* DEFTEMPLATE DEFINITIONS *
;;;***************************

(deftemplate MAIN::rule
 (slot name (default-dynamic (generate-rule-name)))
 (slot validate (default no))
 (multislot if)
 (multislot then)
 (multislot processed))

(deftemplate MAIN::question
 (multislot valid-answers)
 (slot variable)
 (slot query))

5

(deftemplate MAIN::answer
 (slot variable)
 (slot prefix (default ""))
 (slot postfix (default "")))

(deftemplate MAIN::goal
 (slot variable))

(deftemplate MAIN::variable
 (slot name)
 (slot value))

(deftemplate MAIN::activity)

(deftemplate MAIN::legalanswers
 (multislot values))

;;;**************************
;;;* INFERENCE ENGINE RULES *
;;;**************************

(defrule MAIN::startup

6

 =>
 (if ?*validate*
 then
 (focus VALIDATE CHAIN ASK)
 else
 (focus CHAIN ASK)))

(defrule MAIN::continue
 (declare (salience -10))
 ?f <- (activity)
 =>
 (retract ?f)
 (focus CHAIN ASK))

(defrule MAIN::goal-satified ""
 (goal (variable ?goal))
 (variable (name ?goal) (value ?value))
 (answer (prefix ?prefix) (postfix ?postfix) (variable ?goal))
 =>
 (format t "%s%s%s%n" ?prefix ?value ?postfix))

;;; ##################

7

;;; CHAIN MODULE RULES
;;; ##################

(defrule CHAIN::propagate-goal ""
 (logical (goal (variable ?goal))
 (rule (if ?variable $?)
 (then ?goal ? ?value)))
 =>
 (assert (goal (variable ?variable))))

(defrule CHAIN::modify-rule-match-is ""
 (variable (name ?variable) (value ?value))
 ?f <- (rule (if ?variable is ?value and $?rest)
 (processed $?p))
 =>
 (modify ?f (if ?rest)
 (processed ?p ?variable is ?value and)))

(defrule CHAIN::rule-satisfied-is ""
 (variable (name ?variable) (value ?value))
 ?f <- (rule (if ?variable is ?value)
 (then ?goal ? ?goal-value)

8

 (processed $?p))
 =>
 (modify ?f (if)
 (processed ?p ?variable is ?value #)))

(defrule CHAIN::apply-rule ""
 (logical (rule (if)
 (then ?goal ? ?goal-value)))
 =>
 (assert (variable (name ?goal) (value ?goal-value))))

;;; ################
;;; ASK MODULE RULES
;;; ################

(defrule ASK::ask-question-no-legalvalues ""
 (not (legalanswers))
 ?f1 <- (goal (variable ?variable))
 (question (variable ?variable) (query ?text))
 (not (variable (name ?variable)))
 =>
 (assert (activity))

9

 (retract ?f1)
 (format t "%s " ?text)
 (assert (variable (name ?variable) (value (read)))))

(defrule ASK::ask-question-legalvalues ""
 (legalanswers (values $?answers))
 ?f1 <- (goal (variable ?variable))
 (question (variable ?variable) (query ?text))
 (not (variable (name ?variable)))
 =>
 (assert (activity))
 (retract ?f1)
 (format t "%s " ?text)
 (printout t ?answers " ")
 (bind ?reply (read))
 (if (lexemep ?reply)
 then
 (bind ?reply (lowcase ?reply)))
 (if (member ?reply ?answers)
 then (assert (variable (name ?variable) (value ?reply)))
 else (assert (goal (variable ?variable)))))

10

;;; #####################
;;; VALIDATE MODULE RULES
;;; #####################

(defrule VALIDATE::copy-rule
 (declare (salience 10))
 ?f <- (rule (validate no))
 =>
 (duplicate ?f (validate yes))
 (modify ?f (validate done)))

(defrule VALIDATE::next-condition
 (declare (salience -10))
 ?f <- (rule (name ?name) (validate yes)
 (if ?a ?c ?v and $?rest))
 =>
 (modify ?f (if ?rest)))

(defrule VALIDATE::validation-complete
 (declare (salience -10))
 ?f <- (rule (validate yes) (if ? ? ?))
 =>

11

 (retract ?f))

;;; *******************
;;; Validation - Syntax
;;; *******************

(defrule VALIDATE::and-connector
 ?f <- (rule (name ?name) (validate yes)
 (if ?a ?c ?v ?connector&~and $?))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", if conditions must be connected
using and:" crlf
 " " ?a " " ?c " " ?v " *" ?connector "*" crlf))

(defrule VALIDATE::and-requires-additional-condition
 ?f <- (rule (name ?name) (validate yes)
 (if ?a ?c ?v and))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", an additional condition should
follow the final and:" crlf

12

 " " ?a " " ?c " " ?v " and <missing condition>"
crlf))

(defrule VALIDATE::incorrect-number-of-then-terms
 ?f <- (rule (name ?name) (validate yes)
 (then $?terms&:(<> (length$?terms) 3)))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", then portion should be of the
form <variable> is <value>:" crlf
 " " (implode$?terms) crlf))

(defrule VALIDATE::incorrect-number-of-if-terms
 ?f <- (rule (name ?name) (validate yes)
 (if $?terms&:(< (length$?terms) 3)))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", if portion contains an
incomplete condition:" crlf
 " " (implode$?terms) crlf))

(defrule VALIDATE::incorrect-then-term-syntax

13

 ?f <- (rule (name ?name) (validate yes)
 (then ?a ?c&~is ?v))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", then portion should be of the
form <variable> is <value>:" crlf
 " " ?a " " ?c " " ?v " " crlf))

(defrule VALIDATE::incorrect-if-term-syntax
 ?f <- (rule (name ?name) (validate yes)
 (if ?a ?c&~is ?v $?))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", if portion comparator should
be \"is\"" crlf
 " " ?a " " ?c " " ?v " " crlf))

(defrule VALIDATE::illegal-variable-value
 ?f <- (rule (name ?name) (validate yes)
 (if ?a ?c ?v $?))
 (question (variable ?a) (valid-answers))
 (legalanswers (values $?values))

14

 (test (not (member$?v ?values)))
 =>
 (retract ?f)
 (printout t "In rule " ?name ", the value " ?v " is not legal
for variable " ?a ":" crlf
 " " ?a " " ?c " " ?v crlf))

(defrule VALIDATE::reachable
 (rule (name ?name) (validate yes)
 (if ?a ?c ?v $?))
 (not (question (variable ?a)))
 (not (rule (then ?a $?)))
 =>
 (printout t "In rule " ?name " no question or rule could be
found "
 "that can supply a value for the variable " ?a ":"
crlf
 " " ?a " " ?c " " ?v crlf))

(defrule VALIDATE::used "TBD lower salience"
 ?f <- (rule (name ?name) (validate yes)
 (then ?a is ?v))

15

 (not (goal (variable ?a)))
 (not (rule (if ?a ? ?v $?)))
 =>
 (retract ?f)
 (printout t "In rule " ?name " the conclusion for variable " ?a
 " is neither referenced by any rules nor the primary
goal" crlf
 " " ?a " is " ?v crlf))

(defrule VALIDATE::variable-in-both-if-and-then
 ?f <- (rule (name ?name) (validate yes)
 (if ?a $?)
 (then ?a is ?v))
 =>
 (retract ?f)
 (printout t "In rule " ?name " the variable " ?a
 " is used in both the if and then sections" crlf))

(defrule VALIDATE::question-variable-unreferenced
 (question (variable ?a) (query ?q))
 (not (rule (validate done) (if $? ?a is ?v $?)))
 =>

16

 (printout t "The question \"" ?q "\", assigns a value to the
variable " ?a
 " which is not referenced by any rules" crlf))

;;;***************************
;;;* DEFFACTS KNOWLEDGE BASE *
;;;***************************

(deffacts MAIN::knowledge-base
 (goal (variable type.animal))
 (legalanswers (values yes no))
 (rule (if backbone is yes)
 (then superphylum is backbone))
 (rule (if backbone is no)
 (then superphylum is jellyback))
 (question (variable backbone)
 (query "Does your animal have a backbone?"))
 (rule (if superphylum is backbone and
 warm.blooded is yes)
 (then phylum is warm))
 (rule (if superphylum is backbone and
 warm.blooded is no)

17

 (then phylum is cold))
 (question (variable warm.blooded)
 (query "Is the animal warm blooded?"))
 (rule (if superphylum is jellyback and
 live.prime.in.soil is yes)
 (then phylum is soil))
 (rule (if superphylum is jellyback and
 live.prime.in.soil is no)
 (then phylum is elsewhere))
 (question (variable live.prime.in.soil)
 (query "Does your animal live primarily in soil?"))
 (rule (if phylum is warm and
 has.breasts is yes)
 (then class is breasts))
 (rule (if phylum is warm and
 has.breasts is no)
 (then type.animal is bird/penguin))
 (question (variable has.breasts)
 (query "Normally, does the female of your animal nurse
its young with milk?"))
 (rule (if phylum is cold and
 always.in.water is yes)

18

 (then class is water))
 (rule (if phylum is cold and
 always.in.water is no)
 (then class is dry))
 (question (variable always.in.water)
 (query "Is your animal always in water?"))
 (rule (if phylum is soil and
 flat.bodied is yes)
 (then type.animal is flatworm))
 (rule (if phylum is soil and
 flat.bodied is no)
 (then type.animal is worm/leech))
 (question (variable flat.bodied)
 (query "Does your animal have a flat body?"))
 (rule (if phylum is elsewhere and
 body.in.segments is yes)
 (then class is segments))
 (rule (if phylum is elsewhere and
 body.in.segments is no)
 (then class is unified))
 (question (variable body.in.segments)
 (query "Is the animals body in segments?"))

19

 (rule (if class is breasts and
 can.eat.meat is yes)
 (then order is meat))
 (rule (if class is breasts and
 can.eat.meat is no)
 (then order is vegy))
 (question (variable can.eat.meat)
 (query "Does your animal eat red meat?"))
 (rule (if class is water and
 boney is yes)
 (then type.animal is fish))
 (rule (if class is water and
 boney is no)
 (then type.animal is shark/ray))
 (question (variable boney)
 (query "Does your animal have a boney skeleton?"))
 (rule (if class is dry and
 scaly is yes)
 (then order is scales))
 (rule (if class is dry and
 scaly is no)
 (then order is soft))

20

 (question (variable scaly)
 (query "Is your animal covered with scaled skin?"))
 (rule (if class is segments and
 shell is yes)
 (then order is shell))
 (rule (if class is segments and
 shell is no)
 (then type.animal is centipede/millipede/insect))
 (question (variable shell)
 (query "Does your animal have a shell?"))
 (rule (if class is unified and
 digest.cells is yes)
 (then order is cells))
 (rule (if class is unified and
 digest.cells is no)
 (then order is stomach))
 (question (variable digest.cells)
 (query "Does your animal use many cells to digest its
food instead of a stomach?"))
 (rule (if order is meat and
 fly is yes)
 (then type.animal is bat))

21

 (rule (if order is meat and
 fly is no)
 (then family is nowings))
 (question (variable fly)
 (query "Can your animal fly?"))
 (rule (if order is vegy and
 hooves is yes)
 (then family is hooves))
 (rule (if order is vegy and
 hooves is no)
 (then family is feet))
 (question (variable hooves)
 (query "Does your animal have hooves?"))
 (rule (if order is scales and
 rounded.shell is yes)
 (then type.animal is turtle))
 (rule (if order is scales and
 rounded.shell is no)
 (then family is noshell))
 (question (variable rounded.shell)
 (query "Does the animal have a rounded shell?"))
 (rule (if order is soft and

22

 jump is yes)
 (then type.animal is frog))
 (rule (if order is soft and
 jump is no)
 (then type.animal is salamander))
 (question (variable jump)
 (query "Does your animal jump?"))
 (rule (if order is shell and
 tail is yes)
 (then type.animal is lobster))
 (rule (if order is shell and
 tail is no)
 (then type.animal is crab))
 (question (variable tail)
 (query "Does your animal have a tail?"))
 (rule (if order is cells and
 stationary is yes)
 (then family is stationary))
 (rule (if order is cells and
 stationary is no)
 (then type.animal is jellyfish))
 (question (variable stationary)

23

 (query "Is your animal attached permanently to an
object?"))
 (rule (if order is stomach and
 multicelled is yes)
 (then family is multicelled))
 (rule (if order is stomach and
 multicelled is no)
 (then type.animal is protozoa))
 (question (variable multicelled)
 (query "Is your animal made up of more than one
cell?"))
 (rule (if family is nowings and
 opposing.thumb is yes)
 (then genus is thumb))
 (rule (if family is nowings and
 opposing.thumb is no)
 (then genus is nothumb))
 (question (variable opposing.thumb)
 (query "Does your animal have an opposing thumb?"))
 (rule (if family is hooves and
 two.toes is yes)
 (then genus is twotoes))

24

 (rule (if family is hooves and
 two.toes is no)
 (then genus is onetoe))
 (question (variable two.toes)
 (query "Does your animal stand on two toes/hooves per
foot?"))
 (rule (if family is feet and
 live.in.water is yes)
 (then genus is water))
 (rule (if family is feet and
 live.in.water is no)
 (then genus is dry))
 (question (variable live.in.water)
 (query "Does your animal live in water?"))
 (rule (if family is noshell and
 limbs is yes)
 (then type.animal is crocodile/alligator))
 (rule (if family is noshell and
 limbs is no)
 (then type.animal is snake))
 (question (variable limbs)
 (query "Does your animal have limbs?"))

25

 (rule (if family is stationary and
 spikes is yes)
 (then type.animal is sea.anemone))
 (rule (if family is stationary and
 spikes is no)
 (then type.animal is coral/sponge))
 (question (variable spikes)
 (query "Does your animal normally have spikes
radiating from its body?"))
 (rule (if family is multicelled and
 spiral.shell is yes)
 (then type.animal is snail))
 (rule (if family is multicelled and
 spiral.shell is no)
 (then genus is noshell))
 (question (variable spiral.shell)
 (query "Does your animal have a spiral-shaped
shell?"))
 (rule (if genus is thumb and
 prehensile.tail is yes)
 (then type.animal is monkey))
 (rule (if genus is thumb and

26

 prehensile.tail is no)
 (then species is notail))
 (question (variable prehensile.tail)
 (query "Does your animal have a prehensile tail?"))
 (rule (if genus is nothumb and
 over.400 is yes)
 (then species is 400))
 (rule (if genus is nothumb and
 over.400 is no)
 (then species is under400))
 (question (variable over.400)
 (query "Does an adult normally weigh over 400
pounds?"))
 (rule (if genus is twotoes and
 horns is yes)
 (then species is horns))
 (rule (if genus is twotoes and
 horns is no)
 (then species is nohorns))
 (question (variable horns)
 (query "Does your animal have horns?"))
 (rule (if genus is onetoe and

27

 plating is yes)
 (then type.animal is rhinoceros))
 (rule (if genus is onetoe and
 plating is no)
 (then type.animal is horse/zebra))
 (question (variable plating)
 (query "Is your animal covered with a protective
plating?"))
 (rule (if genus is water and
 hunted is yes)
 (then type.animal is whale))
 (rule (if genus is water and
 hunted is no)
 (then type.animal is dolphin/porpoise))
 (question (variable hunted)
 (query "Is your animal, unfortunately, commercially
hunted?"))
 (rule (if genus is dry and
 front.teeth is yes)
 (then species is teeth))
 (rule (if genus is dry and
 front.teeth is no)

28

 (then species is noteeth))
 (question (variable front.teeth)
 (query "Does your animal have large front teeth?"))
 (rule (if genus is noshell and
 bivalve is yes)
 (then type.animal is clam/oyster))
 (rule (if genus is noshell and
 bivalve is no)
 (then type.animal is squid/octopus))
 (question (variable bivalve)
 (query "Is your animal protected by two half-
shells?"))
 (rule (if species is notail and
 nearly.hairless is yes)
 (then type.animal is man))
 (rule (if species is notail and
 nearly.hairless is no)
 (then subspecies is hair))
 (question (variable nearly.hairless)
 (query "Is your animal nearly hairless?"))
 (rule (if species is 400 and
 land.based is yes)

29

 (then type.animal is bear/tiger/lion))
 (rule (if species is 400 and
 land.based is no)
 (then type.animal is walrus))
 (question (variable land.based)
 (query "Is your animal land based?"))
 (rule (if species is under400 and
 thintail is yes)
 (then type.animal is cat))
 (rule (if species is under400 and
 thintail is no)
 (then type.animal is coyote/wolf/fox/dog))
 (question (variable thintail)
 (query "Does your animal have a thin tail?"))
 (rule (if species is nohorns and
 lives.in.desert is yes)
 (then type.animal is camel))
 (rule (if species is nohorns and
 lives.in.desert is no and
 semi.aquatic is no)
 (then type.animal is giraffe))
 (rule (if species is nohorns and

30

 lives.in.desert is no and
 semi.aquatic is yes)
 (then type.animal is hippopotamus))
 (question (variable lives.in.desert)
 (query "Does your animal normally live in the
desert?"))
 (question (variable semi.aquatic)
 (query "Is your animal semi-aquatic?"))
 (rule (if species is teeth and
 large.ears is yes)
 (then type.animal is rabbit))
 (rule (if species is teeth and
 large.ears is no)
 (then type.animal is rat/mouse/squirrel/beaver/porcupine))
 (question (variable large.ears)
 (query "Does your animal have large ears?"))
 (rule (if species is noteeth and
 pouch is yes)
 (then type.animal is "kangaroo/koala bear"))
 (rule (if species is noteeth and
 pouch is no)
 (then type.animal is mole/shrew/elephant))

31

 (question (variable pouch)
 (query "Does your animal have a pouch?"))
 (rule (if subspecies is hair and
 long.powerful.arms is yes)
 (then type.animal is orangutan/gorilla/chimpanzie))
 (rule (if subspecies is hair and
 long.powerful.arms is no)
 (then type.animal is baboon))
 (question (variable long.powerful.arms)
 (query "Does your animal have long, powerful arms?"))
 (rule (if species is horns and
 fleece is yes)
 (then type.animal is sheep/goat))
 (rule (if species is horns and
 fleece is no)
 (then subsubspecies is nofleece))
 (question (variable fleece)
 (query "Does your animal have fleece?"))
 (rule (if subsubspecies is nofleece and
 domesticated is yes)
 (then type.animal is cow))
 (rule (if subsubspecies is nofleece and

32

 domesticated is no)
 (then type.animal is deer/moose/antelope))
 (question (variable domesticated)
 (query "Is your animal domesticated?"))
 (answer (prefix "I think your animal is a ") (variable
type.animal) (postfix ".")))

33

	Пропонується студентам ознайомитися з приведеними текстами програм реалізації експертної системи на основі бази знань в CLIPS та запустити їх.

